scholarly journals Effects of Different Doping Ratio of Cu Doped CdS on QDSCs Performance

2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lin Li ◽  
Xiaoping Zou ◽  
Hongquan Zhou ◽  
Gongqing Teng

Cu-doped-CdS and In-doped-CdS cosensitized (Cu-doped-CdS/In-doped-CdS) quantum dot solar cells (QDSCs) are introduced here. Different cosensitized sequences, doping ratios, and the thickness (SILAR cycles) of Cu-doped-CdS and In-doped-CdS are discussed. Compared with undoped CdS QDSCs, the short circuit current density, UV-Vis absorption spectra, IPCE (monochromatic incident photon-to-electron conversion), open circuit voltage, and so on are all improved. The photoelectric conversion efficiency has obviously improved from 0.71% to 1.28%.


2020 ◽  
Vol 13 (06) ◽  
pp. 2050028
Author(s):  
Tianyu Guo ◽  
Hui Zhang ◽  
Guifeng Chen ◽  
Boling Long ◽  
Luxiao Xie ◽  
...  

I–III–VI chalcopyrite copper indium selenium is one of therepresentatives of the light absorbing layer material, and is often used for a thin-film solar cell. With the development of nano-technology, CuInSe2 quantum dots (CISe QDs) which have intermediate belt and excitation effect characteristics are applied to the solar cells as an alternative of Cd- or S-based QDs. Most conventional methods for the synthesis of CISe QDs using solution involve the dangerous and environmentally unfriendly Oleylamine or phosphine coordination compounds. In this work, CISe QDs were synthesized by a green, safe and low-temperature method in triethylene glycol. Through controlling the growth temperature and time, the diameter can be adjusted from 3[Formula: see text]nm to 10[Formula: see text]nm. The samples exhibit quantum confinement effect, and have a controllable optical band gap. QDs were deposited on the surface of ZnO nanorods to obtain a photoanode, which were fabricated into quantum dot-sensitized solar cells. The device exhibits size-dependent performance. And the open circuit voltage shows a fluctuation up to 0.26[Formula: see text]V. When the size is 4[Formula: see text]nm, the short circuit current density is the largest (15[Formula: see text]mA/cm2).


2014 ◽  
Vol 875-877 ◽  
pp. 1904-1907
Author(s):  
Bao Li Zhang ◽  
X.P. Zou ◽  
X.M. Lv ◽  
G.Q. Yang ◽  
C.L. Wei ◽  
...  

In this paper, we mainly talk about two kinds of ZnO nanostructure materials which are rod and flower structure by hydrothermal growth as photoanode of quantum dot sensitized solar cells (QDSSCs). Using chemical bath deposition to assemble CdS quantum dots onto ZnO nanostructure materials, and after different CBD cycles we could get the cell parameters of different CBD cycles respectively in their I-V curves, from which we could see it is the flower structure that has the highest efficiency which is 0.346% after 9 CBD cycles and the short-circuit current is 2.88 mA/cm2. Therefore, we could see that ZnO flower structure has a potential application in solar cell devices as the photoelectrode to gain higher photoelectric conversion efficiency (PCE).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yanyan Gao ◽  
Xiaoping Zou ◽  
Zongbo Huang

Incorporated foreign atoms into the quantum dots (QDs) used in heterojunction have always been a challenge for solar energy conversion. A foreign atom indium atom was incorporated into PbS/CdS QDs to prepare In-PbS/In-CdS heterojunction by successive ionic layer adsorption and reaction method which is a chemical method. Experimental results indicate that PbS or CdS has been doped with In by SILAR method; the concentration of PbS and CdS which was doped In atoms has no significantly increase or decrease. In addition, incorporating of Indium atoms has resulted in the lattice distortions or changes of PbS or CdS and improved the light harvest of heterojunction. Using this heterojunction, Pt counter electrode and polysulfide electrolyte, to fabricate quantum dot sensitized solar cells, the short circuit current density ballooned to 27.01 mA/cm2from 13.61 mA/cm2and the open circuit voltage was improved to 0.43 V from 0.37 V at the same time.


2012 ◽  
Vol 519 ◽  
pp. 70-73
Author(s):  
Yan Xiang Wang ◽  
Sun Jian ◽  
Bing Xin Zhao

The influences of ZnO photoanode structure on the properties of ZnO dye-sensitized solar cell were studied in this paper. Four kinds of ZnO photoanode films prepared from ZnO nanopowders, nanorods, nanosheets and aggregates were investigated. Their photovoltaic parameters were discussed and compared. ZnO cell consisted of ZnO aggregates had optimal properties, photoelectric conversion efficiency, open circuit voltage, short-circuit current and the fill factor of ZnO aggregates cells were 2.15%, 0.64V, 6.47mA•cm-2 and 0.52, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Zongbo Huang ◽  
Xiaoping Zou

PbS : In and CdS quantum dots (QDs) are sequentially assembled onto a nanocrystalline TiO2film to prepare a PbS : In/CdS cosensitized photoelectrode for QD sensitized solar cells (QDSCs). The results show that PbS : In/CdS QDs have exhibited a significant effect in the light harvest and performance of the QDSC. In the cascade structure of the electrode, the reorganization of energy levels between PbS and TiO2forms a stepwise structure of band-edge levels which is advantageous to the electron injection into TiO2. Energy conversion efficiency of 2.3% is achieved with the doped electrode, under the illumination of one sun (AM1.5, 100 mW cm2). Besides, a remarkable short circuit current density (up to 23 mA·cm−2) is achieved in the resulting PbS : In/CdS quantum dot sensitized solar cell, and the related mechanism is discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Yanzhen Yang ◽  
Renjie Sun ◽  
Chengwu Shi ◽  
Yucheng Wu ◽  
Mei Xia

N-(2-hydroxyethyl)ethylenediaminium iodides (HEEDAIs) and N-(2-hydroxyethyl)piperazinium iodides (HEPIs) were synthesized, and their thermal properties were analysed. The influence of HEEDAI and HEPI onI3-/I-redox behavior in binary ionic liquid was investigated. The result revealed that HEEDAI can suppress the recombination betweenI3-and the injected electrons in TiO2conduction band and be used as the alternative of 4-tert-butylpyridine in the electrolyte of dye-sensitized solar cells. The electrolyte C, 0.15 mol⋅L−1I2, HEEDAI and MPII with mass ratio of 1 : 4, gave the short-circuit photocurrent density of 9.36 mA⋅cm−2, open-circuit photovoltage of 0.67 V, fill factor of 0.52, and the corresponding photoelectric conversion efficiency of 3.24% at the illumination (air mass 1.5, 100 mW⋅cm−2, active area 0.25 cm2).


2011 ◽  
Vol 347-353 ◽  
pp. 906-911
Author(s):  
Zhi Qiang Hu ◽  
De Feng Huang ◽  
Xian Qing Liu ◽  
Hong Gao ◽  
Hong Shun Hao

Liquid electrolyte for dye-sensitized solar cells (DSSCs) was prepared by using the mixture of sulfolane and 3-methoxypropionitrile as a solvent, 4-tert-butylpyridine as an additive. The influences of sulfolane on electrolyte conductivity, photoelectric performances and the DSSCs stability were investigated. The results indicated that when the ratio of 3-methoxypropionitrile to sulfolane achieves 3:2, the cell showed the optimal photoelectric properties and stability, and the short-circuit current and photoelectric conversion efficiency achieved 7.58mA/cm2 and 2.79%, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 1545-1548
Author(s):  
Yan Xiang Wang ◽  
Bing Xin Zhao ◽  
Jian Sun

In this paper, pure ZnO nanospheres and IO3- ions doped ZnO nanospheres were prepared by heating under reflux with zinc acetate and diethylene glycol as raw materials, and the ZnO dye-sensitized solar cells (DSCs) were prepared. The influences of reaction time and IO3--ions dope on ZnO properties were studied. DSCs properties prepared with obtained ZnO nanospheres were investied. ZnO nanospheres were characterized by XRD, SEM and infrared absorption spectrogram. The results showed that when the temperature was 160°C, ZnO nanospheres with diameter 100-800nm were obtained. When reaction time was 2h, ZnO diameter was about 500nm. When the reaction time was 24h, the diameter of ZnO was about 800nm with wider distribution. The ZnO DSCs were prepared by using ZnO nanopowders with different reaction time as photoanode. The photoelectric conversion efficiency of 24h-ZnO DSCs was the highest. The photoelectric conversion efficiency, open circuit voltage, short-circuit current and fill factor were 2.15%, 0.64V, 6.47 mA•cm-2, 0.52, respectively.


Sign in / Sign up

Export Citation Format

Share Document