Modification of Cordierite Honeycomb Ceramics Matrix for DeNOx Catalyst

2012 ◽  
Vol 1449 ◽  
Author(s):  
Qingcai Liu ◽  
Yuanyuan He ◽  
Jian Yang ◽  
Wenchang Xi ◽  
Juan Wen ◽  
...  

ABSTRACTTo obtain highly dispersed and highly active catalysts by impregnating of active species onto the monolith directly, cordierite honeycomb ceramics were modified by nitric acid solution of 68wt%. Effects of acid treatment temperature and time on the performance of cordierite were investigated. Specific surface area, pore size distribution, morphology and structure of cordierite were characterized by N2-physical adsorption, SEM, XRD, respectively. Concentrations of ions in the acid solution were measured by AAS. It is shown that the corrosion content of cordierite increases and more micropores are generated with increasing time of acid treatment, leading to an upward trend of specific surface area. The coefficient of thermal expansion and compression strength decrease obviously at a higher temperature, which is mainly attributed to the removal of Al and Mg ions from the silicate structure and delayed formation of free amorphous silica on the surface of the cordierite. The optimal modification process of cordierite matrix acid erosion is at 110°C for 6 h.

2019 ◽  
Vol 19 (11) ◽  
pp. 7178-7184 ◽  
Author(s):  
Xuteng Xing ◽  
Jihui Wang ◽  
Qiushi Li ◽  
Wenbin Hu

Halloysite nanotubes (HNTs) are natural clay minerals with a tubular structure. They have attracted considerable attention as a potential nanocontainer due to their abundance, biocompatibility and nontoxicity. In this study, HNTs were handled with H2SO4 at 70 °C. The morphology and structure of these acid-treated and original HNTs were investigated by scanning electron microscopy (SEM), energy dispersion spectrum (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), and their specific surface area was determined by automatic gas adsorption analyzer. The loading efficiency and release behavior of acid-treated HNTs for 2-Mercaptobenzothiazole (MBT) were investigated by UV-vis spectrophotometer. Results show that acid-treated HNTs retained their tubular structure, but their internal diameter expanded by 35–37 nm after 32 h of acid treatment. After 72 h of acid treatment, HNTs can be transferred into amorphous silica nanotubes. Moreover, the specific surface area of these HNTs samples initially increased with the increase in acid treatment time but then started to decrease after 32 h. The specific surface area of acid-treated HNTs at 32 h can reach 251.6 m2/g, which was much higher than that for untreated HNTs (55.3 m2/g). In addition, the loading capacity of acid-treated HNTs can reach 32.1% for HNTs-32, which is about three times higher than that of original HNTs. The acid treatment has slight effect on the release behavior.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Renjie Zhou ◽  
Gui Chen ◽  
Yuejun Ouyang ◽  
Hairui Ni ◽  
Nonglin Zhou ◽  
...  

Using MOF-5 as a template, the porous carbon (MDPC-600) possessing high specific surface area was obtained after carbonization and acid washing. After MDPC-600 was loaded with Cu ions, the catalyst Cu/MDPC-600 was acquired by heat treatment under nitrogen atmosphere. The catalyst was characterized by X-ray powder diffraction (XRD), N2 physical adsorption (BET), field emission electron microscope (SEM), energy spectrum, and transmission electron microscope (TEM). The results show that the Cu/MDPC-600 catalyst prepared by using MOF-5 as the template has a very high specific surface area, and Cu is uniformly supported on the carrier. The catalytic hydrogen peroxide oxidation reaction of phenol hydroxylation was investigated and exhibits better catalytic activity and stability in the phenol hydroxylation reaction. The catalytic effect was best when the reaction temperature was 80°C, the reaction time was 2 h, and the amount of catalyst was 0.05 g. The conversion rate of phenol was 47.6%; the yield and selectivity of catechol were 37.8% and 79.4%, respectively. The activity of the catalyst changes little after three cycles of use.


Clay Minerals ◽  
2001 ◽  
Vol 36 (4) ◽  
pp. 483-488 ◽  
Author(s):  
M. Suárez Barrios ◽  
C. de Santiago Buey ◽  
E. García Romero ◽  
J. M. Martín Pozas

AbstractThe physicochemical properties of clays can be modified by acid treatment with inorganic acids. This treatment is usually referred to as ‘acid activation’, because it increases the specific surface area and the number of active sites of the solids. In the present study, the acid activation of saponite from Cerro del Aguila (Madrid, Spain) with HCl solutions was measured. Illite, quartz and small amounts of feldspar were found as impurities in the raw saponite.Acid treatments were carried out with different concentrations of HCl solutions. The samples obtained were characterized by mineralogical and chemical analyses, XRD, FT-IR spectroscopy, N2 adsorption-desorption isotherms and TEM. The acid attack, under the conditions employed, produced a progressive destruction of the structure of saponite by partial dissolution of the octahedral Mg(II) cations. Amorphous silica coming from the tetrahedral sheet of saponite was generated. The specific surface area of the most intensely treated sample (2.5% for 24 h) was doubled with respect to that of natural saponite. This increase in the surface area is due to the increase in both the external and internal surface areas.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-1
Author(s):  
Ludmila Velichkina ◽  
◽  
Yakov Barbashin ◽  
Alexander Vosmerikov ◽  
◽  
...  

The objective of this research was to analyze the effect of different concentrations of nitric and hydrochloric acids on the structural, acidic, and catalytic properties of a post-synthetic treated ZSM-5 type zeolite at various temperatures. The properties of zeolite catalysts were determined using different methods, such as the Brunauer-Emmett-Teller (BET) method for specific surface area, temperature-programmed desorption (TPD) of ammonia method for acidic properties, and a flow-through unit with fixed bed catalyst (with upgrading straight-run gasoline fraction of oil) for catalytic activities of initial zeolite and acid-treated samples. The structural and acidic properties of both untreated and treated zeolites were investigated, and the effect of acid treatment on the catalytic properties of the samples in the course of upgrading the straight-run gasoline fraction of oil was determined. The post-synthetic treatment with aqueous nitric acid increased the specific surface area and volume of micropores of ZSM-5 zeolite, while the treatment with aqueous hydrochloric acid led to the formation of mesopores. Acid treatments of zeolite decreased the number of acid sites, mainly due to diminished concentration of low-temperature sites. The yield of liquid products in the conversion of straight-run gasoline fraction of oil, i.e., generation of high-octane gasolines with improved environmental features, was increased using acid-treated zeolites, which was due to the decrease in arene content.


Sign in / Sign up

Export Citation Format

Share Document