treated sample
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 109)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Vol 24 (1) ◽  
pp. 288-309
Author(s):  
Govindaraj Vengateswari ◽  
◽  
Kandhasamy Lalitha ◽  
Muthugounder Subramanian Shivakumar ◽  
◽  
...  

Antimicrobial peptides constitute key factors in insect humoral immune response against invading microorganisms. In this study, biochemical approach was identified antimicrobial peptides which appeared in larval hemolymph of Spodoptera litura after bacterial challenge. HPLC profile showed two major peaks in two samples, Brassica oleracea and Ricinus communis fed S. litura that were collected at 5 min interval. It was shown to be active against Gram-positive and Gram-negative bacteria. The highest zone of inhibition was observed in Staphylococcus aureus and Escherichia coli in B. oleracea fed S. litura hemolymph fraction II and R. communis fed S. litura hemolymph fraction I and it also contributes the increased antioxidant, lysozyme, and less hemolytic activity were increase in treated groups. TLC activity was tested with hemolymph extract samples, pink color pots was identified the protein present in the samples. An SDS-PAGE result shows that high expression of antimicrobial peptide present in the treated sample. The appearance of peptides with such different properties in insect hemolymph in response to immune challenge indicates the complexity of the insect immune system.


2022 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Oliver Voigt ◽  
Beate Krause ◽  
Petra Pötschke ◽  
Michael T. Müller ◽  
Sven Wießner

The thermoelectric behavior of polypropylene (PP) based nanocomposites containing single walled carbon nanotubes (SWCNTs) and five kinds of ionic liquids (Ils) dependent on composite composition and electron beam irradiation (EB) was studied. Therefore, several samples were melt-mixed in a micro compounder, while five Ils with sufficiently different anions and/or cations were incorporated into the PP/SWCNT composites followed by an EB treatment for selected composites. Extensive investigations were carried out considering the electrical, thermal, mechanical, rheological, morphological and, most significantly, thermoelectric properties. It was found that it is possible to prepare n-type melt-mixed polymer composites from p-type commercial SWCNTs with relatively high Seebeck coefficients when adding four of the selected Ils. The highest Seebeck coefficients achieved in this study were +49.3 µV/K (PP/2 wt.% SWCNT) for p-type composites and −27.6 µV/K (PP/2 wt.% SWCNT/4 wt.% IL type AMIM Cl) for n-type composites. Generally, the type of IL is decisive whether p- or n-type thermoelectric behavior is achieved. After IL addition higher volume conductivity could be reached. Electron beam treatment of PP/SWCNT leads to increased values of the Seebeck coefficient, whereas the EB treated sample with IL (AMIM Cl) shows a less negative Seebeck coefficient value.


Author(s):  
Baoquan Chen ◽  
Junbiao Liu ◽  
xiaoxian li ◽  
Weiqing Chen ◽  
xuehui zhang ◽  
...  

Abstract To enhance surface mechanical properties of 690TT alloy, a surface hardening layer was obtained by ultrasonic surface rolling treatment (USRT) and plasma nitriding (PN). The surface morphology, mechanical properties, wear performances and corrosion performance were investigated by XRD, TEM, using a hardness tester, tensile tester, wear tester and electrochemical workstation in simulated sea water, respectively. The results showed that USRT as the pre-treatment can strengthen the performance of PN treatment samples. The USRT+PN treated sample showed existence of dislocation tangles and twin grains. Corrosion resistance in simulated sea water was enhanced. The surface microhardness increased by 180 % compared with the untreated sample, the cross-sectional hardness gradually decreased till the depth of 1mm. The tensile strength increased by a factor of 90% while the elongation decreased by only 40%. The wear scar was narrower and shallower than the untreated sample and the wear rate was significantly dropped. This paper aims at providing a new method for surface strengthening of 690TT alloy.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
N. G. Picazo-Rodríguez ◽  
F. R. Carrillo-Pedroza ◽  
Ma de Jesús Soria-Aguilar ◽  
Gabriela Baltierra ◽  
Gregorio González ◽  
...  

Jarosites are residues generated during the purification of zinc and are composed mainly of iron sulfates ((Na, K)Fe3(SO4)2(OH)6). Due to the large volume of jarosite generated during the process, these residues tend to be deposited in large land areas and are not used. In the present work, jarosite was used without heat treatment (JST) as an adsorbent of hexavalent chromium contained in a sample of wastewater from a chrome plating industry under the following conditions: C0 = 200 mg/L of Cr, T = 25 °C, and pH = 3. It was only possible to remove 34% of Cr (VI). Subsequently, a thermal treatment of a jarosite sample (JTT) was carried out at 600 °C. The heat-treated sample was later used as an adsorbent in the same conditions as those for JST. The maximum chromium removal was 53%, and the adsorption capacity was 10.99 mg/g. The experimental data were fitted to the Langmuir model and to the pseudo-second-order kinetic model. It was determined that the adsorption process involved electrostatic attractions between the surface of the positively charged adsorbent and the chromium anions contained in industrial wastewater.


2022 ◽  
Vol 1213 (1) ◽  
pp. 012001
Author(s):  
A V Sibirev ◽  
M V Alchibaev ◽  
I A Palani ◽  
S Jayachandran ◽  
A Sahu ◽  
...  

Abstract The aim of the paper was to study the one-way and two-way shape memory effects in the NiTi nanofilm/Kapton composite. 500 nm film of the Ni50Ti50 alloy was deposited to Kapton by flash evaporation. After deposition, the NiTi layer was amorphous and the sample was held at a temperature of 350 - 400 °C for two hours in vacuum to crystallize the NiTi layer. As deposited sample as well as samples after heat treatment were bent around the mandrel with various diameters at room temperature and subjected to heating – cooling – heating through a temperature range of the martensitic transformations. It was shown that as-deposited sample did not demonstrate the recoverable stain variation. At the same time, the heat treated sample demonstrated the one-way shape memory effect on heating and a maximum recoverable strain was found to be 2 %. The two-way shape memory effect was not observed on further cooling and heating.


Author(s):  
Ken N Falculan

Enhancing feed efficiency in converting feed mass into pig body mass is a critical phase for the profit in producing pig. To improve the metabolic utilization of dietary nutrients, it relies heavily on a healthy gut or gastrointestinal tract, and only a healthy digestive can result in better feed digestion and better nutrient absorption. Thus, the study investigates the growth performance, the response of the digestive morphology of native pigs, which treatment will stretch higher output and variations under different levels of fermented mungbean. The experimental research design was employed to determine the response of the three (3) pigs treated with mungbean for 70 days. The growth performance of pigs treated with different levels of fermented mungbean has a total gain weight of 7.50kg for Treatment 1; Treatment 2 is 9.00kg and, Treatment 3 is 6.50kg and is observed no significant difference on the final weight and the total weight with a p-value of > 0. 050; the response on digestive morphology such as small intestine, large intestine, heart, stomach, liver, lungs, esophagus, spleen, and kidney of pigs shows no variations on their length, width, and weight with a p-value of >0.050 under the different level of fermented mungbean; and resulted with high output treated with different level of fermented mungbean is observed on Treatment 2 with a lowest feed conversion efficiency of 3.89 for feeds and 1.39 for mungbean. Treatment 2 has the highest gain weight among the treated sample; the intestinal morphology of pigs was comparable under the three treatments; treatment 2 has the lowest feed conversion efficiency.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7219
Author(s):  
Jie Dong ◽  
Shouqian Yuan ◽  
Yongtao Sun ◽  
Shuangping Yang ◽  
Xiangdong Xing ◽  
...  

In this paper, hot-dip aluminizing of ferrite nodular cast iron was carried out after treating liquid aluminum with different electrical pulse parameters. Compared with that of conventional hot-dip aluminizing, the coating structure of the treated sample did not change, the surface was smooth and continuous, and the solidification structure was more uniform. When high voltage and large capacitance were used to treat the liquid aluminum, the thickness and compactness of the coating surface layer increased. The thickness of the alloy layer decreased, and, the compactness and the micro hardness increased, so the electric pulse had a certain inhibition on the formation of the alloy layer. The growth kinetics of the alloy layer showed that the rate-time index decreased from 0.60 for the conventional sample to 0.38 for the electric pulse treated sample. The growth of the alloy layer was controlled by diffusion and interface reaction, but only by diffusion. The AC impedance and polarization curves of the coating showed that the corrosion resistance of hot-dip coating on nodular cast iron was improved by electric pulse treatment.


2021 ◽  
Author(s):  
◽  
Bhumika Bhatt-Wessel

<p>Non-alcoholic fatty liver disease (NAFLD) is a manifestation of the metabolic syndrome in the liver. It is marked by hepatocyte accumulation of triacylglycerol (TAG) rich lipid droplets. In some patients, the disease progresses to non-alcoholic steatohepatitis (NASH), characterized by cellular damage, inflammation and fibrosis. In some cases, cirrhosis and liver failure may occur. However, the pathogenesis of NAFLD is still unclear. The present project is based on the hypothesis that hepatocytes are equipped with mechanisms that allow them to manage lipid accumulation to a certain extent. Continued or increased lipid accumulation beyond this triggers molecular mechanisms such as oxidative stress, lipid peroxidation and cell death that aggravate the condition and cause disease progression. The aim of this project is to study the effects of lipid accumulation on the cells using proteomics approach to identify proteins involved in the disease progression.  A cell culture model was used in the study. HepG2 cells, a human liver carcinoma cell line, were treated with a mixture of fatty acids (FA) to induce lipid accumulation. The lipid accumulation in HepG2 cells was measured with Oil red O assay and the effect of lipid accumulation on the proliferation of the cells was measured using an MTT cell proliferation assay. HepG2 cells treated with 1 mM FA mixture for 6 hours induced lipid accumulation 1.4 times of control with 90% of cell proliferation capacity of the control cells.  The final and the only committed step in TAG biosynthesis is catalysed by acyl-CoA diacylglycerol acyltransferase (DGAT) enzymes. To investigate if limiting lipid accumulation in HepG2 cells would prevent molecular mechanisms of pathogenesis, inhibition of DGAT by small molecule inhibitors was performed. Among the three DGAT inhibitors (A922500, PF06424439 and PF04620110) tested, PF04620110 reduced the lipid accumulation to 1.2 fold of the control cells when they were treated with 100 μM of the inhibitor in the presence of 1 mM FA mixture for 6 h.  Proteomic analyses were carried out for the control, FA-treated and inhibitor-treated cell groups to identify protein changes in the abundance. Functional analyses of the changed proteins identified suggest that lipid accumulation tends to adversely affect the functioning of the ER and the mitochondria. A complex interplay between the two organelles, possibly mediated by Ca2+ signalling may be vital in ensuring cell survival. PF04620110 was able to counter the FA induced changes in the abundance of some proteins involved in the metabolic processes but it had limited effect on the ER chaperones whose abundance in the inhibitor-treated sample was comparable to that of the FA-treated sample. These data provided important information for future discoveries of biomarkers and molecular mechanisms involved in the progression of NAFLD.</p>


2021 ◽  
Author(s):  
◽  
Bhumika Bhatt-Wessel

<p>Non-alcoholic fatty liver disease (NAFLD) is a manifestation of the metabolic syndrome in the liver. It is marked by hepatocyte accumulation of triacylglycerol (TAG) rich lipid droplets. In some patients, the disease progresses to non-alcoholic steatohepatitis (NASH), characterized by cellular damage, inflammation and fibrosis. In some cases, cirrhosis and liver failure may occur. However, the pathogenesis of NAFLD is still unclear. The present project is based on the hypothesis that hepatocytes are equipped with mechanisms that allow them to manage lipid accumulation to a certain extent. Continued or increased lipid accumulation beyond this triggers molecular mechanisms such as oxidative stress, lipid peroxidation and cell death that aggravate the condition and cause disease progression. The aim of this project is to study the effects of lipid accumulation on the cells using proteomics approach to identify proteins involved in the disease progression.  A cell culture model was used in the study. HepG2 cells, a human liver carcinoma cell line, were treated with a mixture of fatty acids (FA) to induce lipid accumulation. The lipid accumulation in HepG2 cells was measured with Oil red O assay and the effect of lipid accumulation on the proliferation of the cells was measured using an MTT cell proliferation assay. HepG2 cells treated with 1 mM FA mixture for 6 hours induced lipid accumulation 1.4 times of control with 90% of cell proliferation capacity of the control cells.  The final and the only committed step in TAG biosynthesis is catalysed by acyl-CoA diacylglycerol acyltransferase (DGAT) enzymes. To investigate if limiting lipid accumulation in HepG2 cells would prevent molecular mechanisms of pathogenesis, inhibition of DGAT by small molecule inhibitors was performed. Among the three DGAT inhibitors (A922500, PF06424439 and PF04620110) tested, PF04620110 reduced the lipid accumulation to 1.2 fold of the control cells when they were treated with 100 μM of the inhibitor in the presence of 1 mM FA mixture for 6 h.  Proteomic analyses were carried out for the control, FA-treated and inhibitor-treated cell groups to identify protein changes in the abundance. Functional analyses of the changed proteins identified suggest that lipid accumulation tends to adversely affect the functioning of the ER and the mitochondria. A complex interplay between the two organelles, possibly mediated by Ca2+ signalling may be vital in ensuring cell survival. PF04620110 was able to counter the FA induced changes in the abundance of some proteins involved in the metabolic processes but it had limited effect on the ER chaperones whose abundance in the inhibitor-treated sample was comparable to that of the FA-treated sample. These data provided important information for future discoveries of biomarkers and molecular mechanisms involved in the progression of NAFLD.</p>


2021 ◽  
pp. 775-780
Author(s):  
Lin Wang ◽  
Bei Liu ◽  
Haiyan Li ◽  
Xiaoping Liang ◽  
Lulu Li ◽  
...  

Effects of hydrogen concentrations on the diversity and changes of bacterial community structure, soybean rhizosphere soil samples were investigated. The high-throughput sequencing technology of illumina was adopted to determine the bacterial 16S rRNA V3+V4 region series. Data processing such as splicing, filtering, removing chimeric sequences, and cluster analysis was then performed based on the raw data, and the tax was annotated with OTU. When the air-treated soil samples were compared with the ones treated with hydrogen at a concentration of 1100 ppm and 1300 ppm, the abundance of Proteobacteria increased and Actinobacteria decreased for the later. In addition the Simpson index decreased and the Shannon index increased significantly for both hydrogen-treated samples. However, for the soil sample treated with 1500 ppm of hydrogen, the above-mentioned two indexes didnot vary obviously compared with the air-treated sample. The results demonstrated that the rhizosphere bacterial structure diversity of soybean was significantly increased after hydrogen treatment at the concentration of 1100 and 1300 ppm. Bangladesh J. Bot. 50(3): 775-780, 2021 (September) Special


Sign in / Sign up

Export Citation Format

Share Document