A Rapid Solar Reduction Method to TiO2/MoO2/Graphene Nanocomposites for Photocatalytic Water Splitting

2015 ◽  
Vol 1738 ◽  
Author(s):  
Jyothirmayee Aravind.S.S ◽  
Kandalam Ramanujachary ◽  
Timothy D. Vaden ◽  
Amos Mugweru

ABSTRACTSemiconductor photocatalysis has emerged as an interesting area of research since the discovery of Honda-Fujishima effect. In this study, TiO2/MoO2/graphene composites have been prepared by a solar radiation-assisted co-reduction method, wherein ammonium tetrathiomolybdate salt and graphite oxide are reduced to MoO2 and graphene respectively along with TiO2. The method involved the utilization of focused pulses of natural sunlight using a simple convex lens, thereby eliminating the need for harmful reducing agents. The compound was characterized by XRD and SEM for phase identification and morphology. The TiO2/MoO2/graphene composite exhibits superior photocatalytic water splitting activity without using a co-catalyst. In addition, we demonstrate the electrocatalytic hydrogen production using this earth abundant catalyst, which shows high current density (60 mA/cm2) and low Tafel slope (47 mV/dec). The hydrogen evolved during photocatalysis was detected by gas chromatography.

Nanoscale ◽  
2018 ◽  
Vol 10 (30) ◽  
pp. 14448-14454 ◽  
Author(s):  
Cheng Shi ◽  
Min Zhang ◽  
Xinxin Hang ◽  
Yanfeng Bi ◽  
Liangliang Huang ◽  
...  

A high-nuclearity Cd24 cluster built from Cd4-thiacalix[4]arene SBUs and in situ generated peroxyphosphate PO53− exhibited significant photocatalytic water splitting activity in absence of a co-catalyst.


2019 ◽  
Vol 7 (12) ◽  
pp. 6708-6719 ◽  
Author(s):  
Kyoung-Won Park ◽  
Alexie M. Kolpak

Overall photocatalytic water splitting with a high efficiency has recently been observed for CoO nanoparticle suspensions in the absence of an applied bias or co-catalyst. This study clarifies the mechanism of spontaneous overall water splitting with the prominent efficiency observed on the CoO nanoparticle.


ChemInform ◽  
2014 ◽  
Vol 46 (3) ◽  
pp. no-no ◽  
Author(s):  
Jingrun Ran ◽  
Jun Zhang ◽  
Jiaguo Yu ◽  
Mietek Jaroniec ◽  
Shi Zhang Qiao

2014 ◽  
Vol 43 (22) ◽  
pp. 7787-7812 ◽  
Author(s):  
Jingrun Ran ◽  
Jun Zhang ◽  
Jiaguo Yu ◽  
Mietek Jaroniec ◽  
Shi Zhang Qiao

Active and robust cocatalysts constructed from earth-abundant elements greatly contribute to the highly efficient, stable and cost-effective photocatalytic water splitting.


2020 ◽  
Author(s):  
Rajiv Ramanujam Prabhakar ◽  
Thomas Moehl ◽  
Sebastian Siol ◽  
Jihye Suh ◽  
David Tilley

<p>Antimony sulfide (Sb<sub>2</sub>S<sub>3</sub>) is a promising light absorbing semiconductor for photovoltaic applications, though it remains vastly unexplored for photoelectrochemical water splitting. Sb<sub>2</sub>S<sub>3</sub> was synthesized by a simple sulfurization of electrodeposited antimony metal at relatively low temperatures (240-300°C) with elemental sulfur. Using a TiO<sub>2</sub> buffer layer and a platinum co-catalyst, photocurrent densities up to ~ 9 mA cm<sup>-2</sup> were achieved at -0.4 V vs. RHE in 1 M H<sub>2</sub>SO<sub>4</sub> under one sun illumination. Using XPS band alignment studies and potential dependent IPCE measurements, a conduction band offset of 0.7 eV was obtained for the Sb<sub>2</sub>S<sub>3</sub>/TiO<sub>2 </sub>junction as well as an unfavorable band bending at the heterointerface, which explains the low photovoltage that was observed (~ 0.1 V).<sub> </sub>Upon inserting an In<sub>2</sub>S<sub>3</sub> buffer layer, which offers a better band alignment, a 0.15 V increase in photovoltage was obtained. The excellent PEC performance and the identification of the origin of the low photovoltage of the Sb<sub>2</sub>S<sub>3</sub> photocathodes in this work pave the way for the further development of this promising earth abundant light absorbing semiconductor for solar fuels generation.</p>


CrystEngComm ◽  
2021 ◽  
Author(s):  
Zhihui Li ◽  
Hanchu Chen ◽  
Yanyan Li ◽  
Hui Wang ◽  
Yanru Liu ◽  
...  

Photocatalytic water-splitting with Z-scheme semiconductor heterojunctions is a promising way to achieve renewable solar fuels. Nevertheless, developing earth-abundant direct Z-scheme photocatalytic systems for efficient H2 production is still under-developed. In...


2020 ◽  
Vol 8 (39) ◽  
pp. 20493-20502
Author(s):  
Stefano Falletta ◽  
Patrick Gono ◽  
Zhendong Guo ◽  
Stavroula Kampouri ◽  
Kyriakos C. Stylianou ◽  
...  

Theoretical methodologies for the band alignment at MOF/co-catalyst/water systems revealing the electronic and atomistic mechanisms underlying their photocatalytic performance.


Sign in / Sign up

Export Citation Format

Share Document