New Light Management Concepts for Thin-Film Silicon Solar Cells

2008 ◽  
Vol 1101 ◽  
Author(s):  
Helmut Stiebig ◽  
Christian Haase ◽  
Silvia Jorke ◽  
Philipp Obermeyer ◽  
Etienne Moulin ◽  
...  

AbstractAn efficient utilization of the sun spectrum is a key issue in the field of thin-film silicon solar cell technology. Therefore, different strategies for enhanced light absorption were presented in the last years. In order to achieve a better understanding of light scattering at nanotextured interfaces the optical properties of a large variety of samples were studied. The angle resolved scattering behavior was analyzed by means of a developed ray tracing model. As an alternative to randomly textured substrates, the influence of periodically textured substrates on the light propagation in solar cells was experimentally and numerically studied with respect to improved light in-coupling and light trapping. Based on a deeper understanding a new tandem cell structure with a diffractive element between the top and bottom cell was developed. Finally, the influence of metallic nanoparticles on the cell performance was studied.

2008 ◽  
Vol 1101 ◽  
Author(s):  
Janez Krc ◽  
Andrej Campa ◽  
Stefan L. Luxembourg ◽  
Miro Zeman ◽  
Marko Topic

AbstractAdvanced light management in thin-film solar cells is important in order to improve the photo-current and, thus, to raise up the conversion efficiencies of the solar cells. In this article two types of periodic structures ¡V one-dimensional diffraction gratings and photonic crystals,are analyzed in the direction of showing their potential for improved light trapping in thin-film silicon solar cells. The anti-reflective effects and enhanced scattering at the gratings with the triangular and rectangular features are studied by means of two-dimensional optical simulations. Simulations of the complete microcrystalline solar cell incorporating the gratings at all interfaces are presented. Critical optical issues to be overcome for achieving the performances of the cells with the optimized randomly textured interfaces are pointed out. Reflectance measurements for the designed 12 layer photonic crystal stack consisting of amorphous silicon nitride and amorphous silicon layers are presented and compared with the simulations. High reflectance (up to 99 %) of the stack is measured for a broad wavelength spectrum. By means of optical simulations the potential for using a simple photonic crystal structure as a back reflector in an amorphous silicon solar cell is demonstrated.


2018 ◽  
Vol 57 (19) ◽  
pp. 5348 ◽  
Author(s):  
Ke Chen ◽  
Rui Wu ◽  
Hongmei Zheng ◽  
Yuanyuan Wang ◽  
Xiaopeng Yu

2015 ◽  
Vol 355 ◽  
pp. 14-18 ◽  
Author(s):  
Yanfeng Wang ◽  
Xiaodan Zhang ◽  
Bing Han ◽  
Lisha Bai ◽  
Huixu Zhao ◽  
...  

2016 ◽  
Vol 16 (5) ◽  
pp. 4978-4983 ◽  
Author(s):  
Sungjae Bong ◽  
Shihyun Ahn ◽  
Le Huy Tuan Anh ◽  
Sunbo Kim ◽  
Hyeongsik Park ◽  
...  

2008 ◽  
Vol 92 (18) ◽  
pp. 181102 ◽  
Author(s):  
Philipp Obermeyer ◽  
Christian Haase ◽  
Helmut Stiebig

2015 ◽  
Vol 8 (3) ◽  
pp. 824-837 ◽  
Author(s):  
F.-J. Haug ◽  
C. Ballif

Thin film silicon is a mature and reliable technology that scales extraordinarily well from lab-cells to production modules.


Sign in / Sign up

Export Citation Format

Share Document