resonance effect
Recently Published Documents


TOTAL DOCUMENTS

772
(FIVE YEARS 209)

H-INDEX

41
(FIVE YEARS 9)

Author(s):  
Lu Yang ◽  
Jingyuan Jia ◽  
Shenglong Li

Exosomes are small nanoscale vesicles with a double-layered lipid membrane structure secreted by cells, and almost all types of cells can secrete exosomes. Exosomes carry a variety of biologically active contents such as nucleic acids and proteins, and play an important role not only in intercellular information exchange and signal transduction, but also in various pathophysiological processes in the human body. Surface-enhanced Raman Spectroscopy (SERS) uses light to interact with nanostructured materials such as gold and silver to produce a strong surface plasmon resonance effect, which can significantly enhance the Raman signal of molecules adsorbed on the surface of nanostructures to obtain a rich fingerprint of the sample itself or Raman probe molecules with ultra-sensitivity. The unique advantages of SERS, such as non-invasive and high sensitivity, good selectivity, fast analysis speed, and low water interference, make it a promising technology for life science and clinical testing applications. In this paper, we briefly introduce exosomes and the current main detection methods. We also describe the basic principles of SERS and the progress of the application of unlabeled and labeled SERS in exosome detection. This paper also summarizes the value of SERS-based exosome assays for early tumor diagnosis.


Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Kameshpandian Paramasivam ◽  
Yuanzhao Shen ◽  
Jiasheng Yuan ◽  
Ibtesam Waheed ◽  
Chuanbin Mao ◽  
...  

Bacteriophages, abbreviated as “phages”, have been developed as emerging nanoprobes for the detection of a wide variety of biological species, such as biomarker molecules and pathogens. Nanosized phages can display a certain length of exogenous peptides of arbitrary sequence or single-chain variable fragments (scFv) of antibodies that specifically bind to the targets of interest, such as animal cells, bacteria, viruses, and protein molecules. Metal nanoparticles generally have unique plasmon resonance effects. Metal nanoparticles such as gold, silver, and magnetism are widely used in the field of visual detection. A phage can be assembled with metal nanoparticles to form an organic–inorganic hybrid probe due to its nanometer-scale size and excellent modifiability. Due to the unique plasmon resonance effect of this composite probe, this technology can be used to visually detect objects of interest under a dark-field microscope. In summary, this review summarizes the recent advances in the development of phage-based probes for ultra-sensitive detection of various bio-species, outlining the advantages and limitations of detection technology of phage-based assays, and highlighting the commonly used editing technologies of phage genomes such as homologous recombination and clustered regularly interspaced palindromic repeats/CRISPR-associated proteins system (CRISPR-Cas). Finally, we discuss the possible scenarios for clinical application of phage-probe-based detection methods.


2022 ◽  
Author(s):  
Xiyu Deng ◽  
Xinya Kuang ◽  
Jiyang Zeng ◽  
Baoye Zi ◽  
Yiwen Ma ◽  
...  

Abstract Photocatalytic water splitting is considered to be a feasible method to replace traditional energy. However, most of the catalysts have unsatisfactory performance. In this work, we used a hydrothermal process to grow Ag nanoparticles in situ on g-C3N4 nanosheets, and then a high performance catalyst (Ag- g-C3N4) under visible light was obtained. The Ag nanoparticles obtained by this process are amorphous and exhibit excellent catalytic activity. At the same time, the local plasmon resonance effect of Ag can effectively enhance the absorption intensity of visible light by the catalyst. The hydrogen production rate promote to 1035 μmol g-1h-1 after loaded 0.6 wt% of Ag under the visible light, which was 313 times higher than that of pure g-C3N4 (3.3μmol g-1h-1). This hydrogen production rate is higher than most previously reported catalysts which loaded with Ag or Pt. The excellent activity of Ag- g-C3N4 is benefited from the Ag nanoparticles and special interaction in each other. Through various analysis and characterization methods, it is shown that the synergy between Ag and g-C3N4 can effectively promote the separation of carriers and the transfer of electrons. Our work proves that Ag- g-C3N4 is a promising catalyst to make full use of solar energy.


Author(s):  
Jose Antonio Antonio Medina Vazquez ◽  
Evelyn Yamel González Ramírez ◽  
Jose Guadalupe Murillo

Abstract In this work, we study a composite zinc oxide photonic crystal that includes a meso-cavity coupled to a photonic crystal L3 microcavity to obtain a double resonance effect and second-harmonic generation conversion efficiency as high as 468 W-1. This exceptional conversion efficiency was attributed to the high quality-factors Q found in the fundamental and second-harmonic modes whose values were of the order of 105 and 106, respectively. Since the L3 microcavity plays a relevant role in the second-harmonic generation of the composite photonic crystal, we performed a calculation of its photonic band structure to observe the induced modes in its bandgap. Furthermore, we also found that the resonant mode adjusted to the frequency of the second-harmonic exhibits high Purcell factors of the order of 105. Hence, in a semiconductor material, it can be easily enhanced the light emission at the second harmonic frequency using an adequate driving fundamental frequency light beam. These results can stimulate the engineering of photonic nanostructures in semiconductor materials to achieve highly efficient non-linear effects with applications in cavity Quantum Electrodynamics.


2021 ◽  
Vol 53 (6) ◽  
pp. 210605
Author(s):  
Iwan Prasetiyo ◽  
Gradi Desendra ◽  
Khoerul Anwar ◽  
Mohammad Kemal Agusta

Several studies have been devoted to increasing the attenuation performance of the Helmholtz resonator (HR). One way is by periodic coupling of HRs in a ducting system. In this study, we propose a different approach, where a membrane (or a thin flexible structure in general) is added to the air cavity of a periodic HR array in order to further enhance the attenuation by utilizing the resonance effect of the membrane. It is expected that three attenuation mechanisms will exist in the system that can enhance the overall attenuation, i.e. the resonance mechanism of the HR, the Bragg reflection of the periodic system, and the resonance mechanism of the membrane or thin flexible structure. This study found that the proposed system yields two adjacent attenuation peaks, related to the HR and the membrane respectively. Moreover, extension of the attenuation bandwidth was also observed as a result of the periodic arrangement of HRs. With the same HR parameters, the peak attenuation by the membrane is tunable by changing its material properties. However, such a system does not always produce a wider attenuation bandwidth; the resonance bandwidths of both mechanisms must overlap.


Author(s):  
Hoang Van Ngoc ◽  
Nguyen Quang Bau ◽  
Doan Minh Quang ◽  
Tran Hai Hung

Based on the quantum kinetic equation (QKE) for electron, we have theoretically studied the theory of photo-stimulated Ettingshausen effect in a one-dimensional cylindrical quantum wire (CQW). The strong electromagnetic wave (EMW) [Formula: see text] plays a role as photo-stimulation source. We obtain the analytic expressions for the kinetic tensors [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and the Ettingshausen coefficient (EC) in the CQW with the dependence on the amplitude and the energy of EMW, the CQW radius, the magnetic field and the temperature for two cases: optical phonon and acoustic phonon. The results are numerically evaluated and graphed for GaAs/AlGaAs CQW model. It is shown that we observe the cyclotron resonance and magneto-phonon resonance effect while surveying EC in terms of magnetic field (with and without EMW) and EMW energy, considered the electron-optical phonon scattering. In case of electron-acoustic phonon scattering, the oscillation of EC is obtained with the transition between low Landau levels (LLs). We also clarify the impact of quantum size effect (QSE) on EC by surveying the influence of EC on the radius of CQW.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3436
Author(s):  
Shaobo Ge ◽  
Weiguo Liu ◽  
Xueping Sun ◽  
Jin Zhang ◽  
Pengfei Yang ◽  
...  

In this paper, comprehensively utilizing the diffraction theory and electromagnetic resonance effect is creatively employed to design a multifunctional metasurface zone plate (MMZP) and achieve the control of polarization states, while maintaining a broadband achromatic converging property in a near-IR region. The MMZP consists of several rings with fixed width and varying heights; each ring has a number of nanofins (usually called meta-atoms). The numerical simulation method is used to analyze the intensity distribution and polarization state of the emergent light, and the results show that the designed MMZP can realize the polarization manipulation while keeping the broadband in focus. For a specific design wavelength (0.7μm), the incident light can be converted from left circularly polarized light to right circularly polarized light after passing through the MMZP, and the focusing efficiency reaches above 35%, which is more than twice as much as reported in the literature. Moreover, the achromatic broadband focusing property of the MMZP is independent with the polarization state of the incident light. This approach broadens degrees of freedom in micro-nano optical design, and is expected to find applications in multifunctional focusing devices and polarization imaging.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7553
Author(s):  
Joanna Korec ◽  
Karol A. Stasiewicz ◽  
Katarzyna Garbat ◽  
Leszek R. Jaroszewicz

This paper is a continuation of previous work and shows the enhancement of the surface plasmon resonance effect in a tapered optical fiber device. The study investigated liquid crystal cells containing a tapered optical fiber covered with a silver nanolayer, surrounded by a low refractive index liquid crystal in terms of the properties of light propagation in the taper structure. Silver films with a thickness of d = 10 nm were deposited on the tapered waist area. Measurements were performed at room temperature; liquid crystal steering voltage U from 0 to 200 V, with and without any amplitude modulation with a frequency of f = 5 Hz, and the wavelength λ ranged from 550 to 1200 nm. A significant influence of the initial arrangement of liquid crystals molecules on light propagation was observed. Three types of liquid crystal cells—orthogonal, parallel, and twist—were considered. During the measurements, resonant peaks were obtained—the position of which can also be controlled by the type of liquid crystal cells and the steering voltage. Based on the obtained results, the best parameters, such as highest peak’s width reduction, and the highest SNR value were received for twisted cells. In addition, the present work was compared with the previous work and showed the possibility of improving properties of the manufactured probes, and consequently, the surface plasmon resonance effect. In the presented paper, the novelty is mainly focused on the used materials as well as suitable changes in applied technological parameters. In contrast to gold, silver is characterized by different optic and dielectric properties, e.g., refractive index, extension coefficient, and permittivity, which results in changes in the light propagation and the SPR wavelengths.


Author(s):  
Thomas Martin Wahl ◽  
Axel Hutt

Abstract Additive noise is known to affect the stability of nonlinear systems. To understand better the role of additive noise in neural systems, we investigate the impact of additive noise on a random neural network of excitatory and inhibitory neurons. Here we hypothesize that the noise originates from the ascending reticular activating system (ARAS). Coherence resonance in the γ-frequency range emerges for intermediate noise levels while the network exhibits non-coherent activity at low and high noise levels. The analytical study of a corresponding mean-field model system explains the resonance effect by a noise-induced phase transition via a saddle-node bifurcation. An analytical study of the linear mean-field systems response to additive noise reveals that the coherent state exhibits a quasi-cycle in the γ-frequency range whose spectral properties are tuned by the additive noise. To illustrate the importance of the work, we show that the quasi-cycle explains γ-enhancement under impact of the anaesthetics ketamine and propofol as a destabilizing effect of the coherent state.


Sign in / Sign up

Export Citation Format

Share Document