barrier layer
Recently Published Documents


TOTAL DOCUMENTS

1527
(FIVE YEARS 237)

H-INDEX

55
(FIVE YEARS 8)

Author(s):  
Akiyoshi Inoue ◽  
Sakura Tanaka ◽  
Takashi Egawa ◽  
Makoto Miyoshi

Abstract In this study, we fabricated and characterized heterojunction field-effect transistors (HFETs) based on an Al0.36Ga0.64N-channel heterostructure with a dual AlN/AlGaInN barrier layer. The device fabrication was accomplished by adopting a regrown n++-GaN layer for ohmic contacts. The fabricated HFETs with a gate length of 2 μm and a gate-to-drain distance of 6 μm exhibited an on-state drain current density as high as approximately 270 mA/mm and an off-state breakdown voltage of approximately 1 kV, which corresponds to an off-state critical electric field of 166 V/μm. This breakdown field, as a comparison in devices without field-plate electrodes, reaches approximately four-fold higher than that for conventional GaN-channel HFETs and was considered quite reasonable as an Al0.36Ga0.64N-channel transistor. It was also confirmed that the devices adopting the dual AlN/AlGaInN barrier layer showed approximately one order of magnitude smaller gate leakage currents than those for devices without the top AlN barrier layer.


2022 ◽  
Author(s):  
Manareldeen Ahmed ◽  
Yan Li ◽  
Wenchao Chen ◽  
Erping Li

Abstract This paper investigates the diffusion barrier performance of 2D layered materials with pre-existing vacancy defects using first-principles density functional theory. Vacancy defects in 2D materials may give rise to a large amount of Cu accumulation, and consequently, the defect becomes a diffusion path for Cu. Five 2D layered structures are investigated as diffusion barriers for Cu, i.e., graphene with C vacancy, hBN with B/N vacancy, and MoS2 with Mo/2S vacancy. The calculated energy barriers using climbing image - nudged elastic band show that MoS2-V2S has the highest diffusion energy barrier among other 2D layers, followed by hBN-VN and graphene. The obtained energy barrier of Cu on defected layer is found to be proportional to the length of the diffusion path. Moreover, the diffusion of Cu through vacancy defects is found to modulate the electronic structures and magnetic properties of the 2D layer. The charge density difference shows that there exists a considerable charge transfer between Cu and barrier layer as quantified by Bader charge. Given the current need for an ultra-thin diffusion barrier layer, the obtained results contribute to the field of application of 2D materials as Cu diffusion barrier in the presence of mono-vacancy defects.


2021 ◽  
pp. 30-40
Author(s):  
Konstantin Boltar ◽  
Natalya Iakovleva ◽  
Alekcey Lopukhi ◽  
Pavel Vlasov

Multilayer structures based on the antimonide group materials with absorber layers InSb or AlxIn1-XSb, and XBn-structures with AlxIn1-XSb barrier layer (InSb/AlxIn1-XSb/InSb), designed for the manufacture of advanced photosensitive devices detecting radiation in the medium-wave infrared (IR) range (MWIR), have been developed and investigated. Various topology photosensitive elements (PSE) with absorbing layers InSb or AlxIn1-XSb were fabricated on the basis of MBE-grown p–i–n and barrier structures. It is shown that wideband ternary al-loys AlxIn1-XSb are considered as an alternative to the narrowband binary compound InSb, since, due to wide-band material properties, photodiodes based on AlxIn1-XSb have lower dark currents, and, consequently, noise. The average values of detectivity D* and noise-equivalent temperature difference (NETD) have been measured for various topology photodetectors, so D* was more than 1011 cmW-1Hz1/2 in p–i–n-structures, and D* exceed of 1012 cmW-1Hz1/2 in barrier structures.


2021 ◽  
Vol 9 (6) ◽  
pp. 479-498
Author(s):  
Konstantin Boltar ◽  
Igor Burlakov ◽  
Natalya Iakovleva ◽  
Alekcey Polessky ◽  
Peter Kuznetsov ◽  
...  

In this paper, we report on the design, the fabrication, and performance of SWIR photomodules using sensitive two-dimensional arrays based on InGaAs-heterostructures. The de- sign of suggested InGaAs-heterostructure includes InAlAs wideband barrier layer and high sensitive absorber InGaAs layer which are increasing the uniformity and operability of focal plane array (FPA), so the number of defect elements are less than 0.5 %. The possibilities of spectral range expanding into short-wavelength to 0.5 μm and into long-wavelength to 2.2 μm regions have been considered. The operation principals of active-pulse system for 0.9–1.7 μm spectral range based on InGaAs 320256 FPA with 30 μm pitch have been presented. The investigations showed that the infrared gated-viewing system based on the InGaAs 320256 FPA provided a spatial resolution of 0,6 m.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7495
Author(s):  
Senka Gudić ◽  
Ladislav Vrsalović ◽  
Dario Kvrgić ◽  
Aleš Nagode

The electrochemical behavior of commercially pure titanium (CP Ti) and Ti-6Al-4V (Grade 5) alloy in phosphate buffered saline solution (PBS, pH = 7.4) at 37 °C (i.e., in simulated physiological solution in the human body) was examined using open circuit potential measurements, linear and potentiodynamic polarization and electrochemical impedance spectroscopy methods. After the impedance measurements and after potentiodynamic polarizationmeasurements, the surface of the samples was investigated by scanning electron microscopy, while the elemental composition of oxide film on the surface of each sample was determined by EDS analysis. The electrochemical and corrosion behavior of CP Ti and Ti-6Al-4V alloys is due to forming a two-layer model of surface oxide film, consisting of a thin barrier-type inner layer and a porous outer layer. The inner barrier layer mainly prevents corrosion of CP Ti and Ti-6Al-4V alloy, whose thickness and resistance increase sharply in the first few days of exposure to PBS solution. With longer exposure times to the PBS solution, the structure of the barrier layer subsequently settles, and its resistance increases further. Compared to Ti-6Al-4V alloy, CP Ti shows greater corrosion stability.


Author(s):  
Nataliya Pugach ◽  
Dennis Heim ◽  
Dmitriy Seleznyov ◽  
Alexander Chernov ◽  
Dirk Menzel

Abstract We propose a superconducting spin valve based on a Josephson junction with B20-family magnetic metal as barrier material. Our analysis shows that the states of this element can be switched by reorienting the intrinsic non-collinear magnetization of the spiral magnet. This reorientation modifies long-range spin-triplet correlations and thereby influences strongly the critical Josephson current. Compared to superconducting spin valves proposed earlier, our device has the following advantages: (i) it contains only one barrier layer, which makes it easier to fabricate and control; (ii) its ground state is stable, which prevents uncontrolled switching; (iii) it is compatible with devices of low-T Josephson electronics. This device may switch between two logical states which exhibit two different values of critical current, or its positive and negative value. I.e. 0-π switch is achievable on one simple Josephson junction.


Solar Energy ◽  
2021 ◽  
Vol 230 ◽  
pp. 1033-1039
Author(s):  
Chen Zhang ◽  
Tongqing Qi ◽  
Wei Wang ◽  
Chenchen Zhao ◽  
Shuda Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document