Validation of a Nuclear Waste Repository Performance Assessment Model:Comparison of Theory With Experiment

1987 ◽  
Vol 112 ◽  
Author(s):  
R. W. Geldart ◽  
B. P. Mcgrail ◽  
K. C. Rhoads ◽  
M. J. Apted

AbstractLaboratory tests were conducted to validate a radionuclide mass transfer model. During the experiments, cesium and uranium releases from a simulated waste form embedded in an isotropic medium of quartz sand were measured. A 0.01 M NaH2PO4 buffer solution flowed past the waste form. Downstream concentrations obtained from computer simulations were compared with experimentally measured concentrations of cesium and uranium. Uranium release was found to be controlled by solubility-limited mass transfer, while cesium release was controlled by waste form dissolution kinetics. It was also found that the effects of dissolution on groundwater chemistry must be coupled with solubility-limited mass transfer models to defensibly predict radionuclide release rates under realistic repository conditions.

2018 ◽  
Author(s):  
M. Chatterjee ◽  
S. Mukhopadhyay ◽  
P. K. Vijayan

Author(s):  
Guodong Wang ◽  
Zhe Wang

The AP1000 containment model has been developed by using WGOTHIC version 4.2 code. Condensation heat and mass transfer from the volumes to the containment shell, conduction through the shell, and evaporation from the shell to the riser were all calculated by using the special CLIMEs model. In this paper, the latest GOTHIC version 8.0 code is used to model both condensation and evaporation heat and mass transfer process. An improved heat and mass transfer model, the diffusion layer model (DLM), is adopted to model the condensation on the inside wall of containment. The Film heat transfer coefficient option is used to model the evaporation on the outside wall of containment. As a preliminary code consolidation effort, it is possible to use GOTHIC 8.0 code as a tool to analysis the AP1000 containment response.


1986 ◽  
Vol 23 (5) ◽  
pp. 472-474 ◽  
Author(s):  
Kozo GONDA ◽  
Shigehiko MIYACHI ◽  
Shoji FUKUDA

Sign in / Sign up

Export Citation Format

Share Document