evaporation process
Recently Published Documents


TOTAL DOCUMENTS

747
(FIVE YEARS 164)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 237 ◽  
pp. 111563
Author(s):  
A. Thomere ◽  
N. Barreau ◽  
N. Stephant ◽  
C. Guillot-Deudon ◽  
E. Gautron ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Jiawei Liu ◽  
Yingzhi Xia ◽  
Hui Li ◽  
Guoping Hu ◽  
Mingming Hu

Embankment soil affected by saline can not only cause roadbed settlement, frosting, and road cracks but also cause corrosion and cracking of roadbed pipelines, which seriously affects the stability of the road. Water evaporation and dry cracking of the saline soil mainly cause soil swelling, poor water stability, and corrosive characteristics of the embankment soil. In this study, the evaporative cracking characteristics of soil with different saline concentrations were investigated. The results showed that the moisture content decreased linearly with the drying time in the early evaporation process, subsequently decreased slow down in the mid-term evaporation, and finally become got and remain a residual moisture content, which are 46.39%, 44.05%, 42.70%, and 40.27% with the increase of the saline concentration. The evaporation process with different saline concentrations in the soil can be divided into three stages: uniform evaporation stage, slow down evaporation stage, and equilibrium evaporation stage, which was consistent with the moisture content change. With the development of the drying time, the cracks gradually appeared on the soil surface, gradually deepened in the soil, and expanded the crack network. The development of cracks can be divided into three stages: the cracking preparation stage, the crack development stage, and the crack stable stage. The cracking began at high evaporation rate under high saline concentration, and the fractal dimension remained stable under similar saline concentration. The fractal dimension was gradually increased with the decrease of the moisture content and the increase of the saline concentration, respectively. The soil began to crack with larger moisture under high saline concentration. The drying cracks in the nature were consistent with the configuration of the cracks formed in the experimental results.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 101
Author(s):  
Mariano Cadoni ◽  
Andrea P. Sanna

We explore the Hawking evaporation of two-dimensional anti-de Sitter (AdS2), dilatonic black hole coupled with conformal matter, and derive the Page curve for the entanglement entropy of radiation. We first work in a semiclassical approximation with backreaction. We show that the end-point of the evaporation process is AdS2 with a vanishing dilaton, i.e., a regular, singularity-free, zero-entropy state. We explicitly compute the entanglement entropies of the black hole and the radiation as functions of the horizon radius, using the conformal field theory (CFT) dual to AdS2 gravity. We use a simplified toy model, in which evaporation is described by the forming and growing of a negative mass configuration in the positive-mass black hole interior. This is similar to the “islands” proposal, recently put forward to explain the Page curve for evaporating black holes. The resulting Page curve for AdS2 black holes is in agreement with unitary evolution. The entanglement entropy of the radiation initially grows, closely following a thermal behavior, reaches a maximum at half-way of the evaporation process, and then goes down to zero, following the Bekenstein–Hawking entropy of the black hole. Consistency of our simplified model requires a non-trivial identification of the central charge of the CFT describing AdS2 gravity with the number of species of fields describing Hawking radiation.


2022 ◽  
Author(s):  
Si-Nae Park ◽  
Se-Yun Kim ◽  
Sang-Ju Lee ◽  
Shi-Joon Sung ◽  
Kee-Jeong Yang ◽  
...  

A uniformly grown Sb2Se3 nanorods array, with the introduction of a MoSe2 interlayer, obtained by a co-evaporation process and its application to three-dimensional (3D) p-n junction high-efficiency Sb2Se3 solar cells...


2021 ◽  
pp. 391-398
Author(s):  
Iuliana Gageanu ◽  
Dan Cujbescu ◽  
Cristinel Dumitru

Nowadays, cooling the air by means of climate maintenance systems is achieved, in most cases, using installations based on freon or other substances that cause pollution. Taking into account the fact that the EEC standards and regulations increase the emphasis on ensuring the quality, labour safety, health and environment, finding a solution for air conditioners that do not use a substance that causes pollution, has become a necessity. As a great part of farming work is done in the warmest periods of the year, temperatures being frequently over 35oC, it is necessary to equip the agricultural machines with air conditioners in order to achieve a thermic comfort in the cab. For this purpose, an air conditioner based on the process of water evaporation was designed, made and tested. The installation is able to cool the air that enters into the cab through the evaporation process that takes place in the special filling, with an efficiency of the mixing process more than 90%. Air passing sections are calculated so that they can assure both the quantity needed for climate maintenance in the cab (about 3.5 - 4 m3/min) and the relative speed between air and water in the filling, in order for the evaporation process to be conducted in the best conditions that were theoretical established.


2021 ◽  
pp. 9-13

"The aim was to study the influence of the main technological parameters on the process of evaporation off the primary mother liquors of the filtration process of a potassium nitrate suspension formed as a result of crystallization of the conversion solution at a temperature of 0 °C. A theoretical analysis of the system diagram and experimental data established the sequence of the formation of components during the evaporation of mother liquors. At the same time, in the studied intervals of variation of the parameters, potassium chloride is formed first, and then, the joint crystallization of potassium and ammonium chlorides occurs with the continuation of the evaporation process, and when the evaporation degree is more than 30-35%, the joint crystallization of potassium, ammonium and potassium nitrate chlorides occurs. The process analytical parameters influence of the ratio of the primary mother liquor and ammonium nitrate, as well as, the degree of evaporation have been studied. A nomogram has been developed showing the dependence of the input and output parameters on the value of the residual pressure, and it makes possible to determine the values ​​of the evaporation degree at given conditions. "


2021 ◽  
Vol 43 (4) ◽  
pp. 51-61
Author(s):  
Ya.H. Hotskyi ◽  
G.K. Ivanitsky ◽  
A. R. Stepaniuk

Creation of new composite granular fertilizers with layered structure, which are formed due to the layered mechanism of granulation in the granulator of the fluidized bed is an urgent task. The process of forming these granules is achieved due to the layered granulation mechanism, the basis of which is the formation of a layer of solids on the surface of the granules by mass crystallization. In the production of granular fertilizers based on ammonium sulfate with the addition of organic and inorganic impurities an important place is occupied by the processes of evaporation and mass crystallization, which determine the morphological properties of the obtained granular material. During the experimental study of the evaporation process, it was found that the process consists of three main evaporation periods: the heating period from the initial temperature to equilibrium, the period of equilibrium evaporation and the decreasing drying rate period with crust formation, during which a solid crystal structure is formed. The beginning of each period according to the example of drying droplets in a gas stream during spray drying is described by the nature of the change in droplet temperature. This paper presents the obtained thermograms of the process of evaporation of droplets with a diameter of 3–7 mm 40%, 50% and 60% aqueous solutions of ammonium sulfate with the addition of a mixture of bone meal. The evaporation of 40%, 50% and 60% solutions of ammonium sulfate with the addition of a mixture of bone meal, with a given ratio of AS: BM on a dry residue of 60:40 and 80:20 on a surface temperature of 95°C in the second evaporation period crystalline nuclei appear, and the concentration of solute is close to saturated and almost unchanged, so that the evaporation rate and temperature of the drop, as can be seen from the thermogram, remain constant temperature for all solutions of ammonium sulfate. Increasing the content of bone meal from 8 to 24% to shift the wet thermometer in the kinetics of the evaporation process. The paper also presents the results of morphological analysis of the obtained solid crystallized drops of ammonium sulfate with impurities of bone meal. It was found that the solid crystallized drop of ammonium sulfate with bone meal consists of a framework of microcrystals of ammonium sulfate, with a reduced size of 10 to 80 μm, bone meal in the form of inclusions is placed in the frame, the particle size of bone meal varies up to 100 μm, indicating that the solution is a suspension.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2030
Author(s):  
Xingwen Wei ◽  
Steffen Dudczig ◽  
Dmitry Chebykin ◽  
Christos G. Aneziris ◽  
Olena Volkova

In the previous research works, ZnAl2O4 material was considered as one of the solutions for the decopperization process of molten steels; up to 33% of decopperization efficiency was reported by utilising the ZnAl2O4 filter. In order to verify the decopperization possibility of ZnAl2O4 materials, iron-based alloys with various copper and carbon contents were interacted with ZnAl2O4 substrates in a heating microscope under an argon gas atmosphere at 1600 °C. Fe-Cu alloys were found to react with the ZnAl2O4 substrate during the interaction process, and a reaction layer with a complex composition around the alloy droplet was formed; however, Cu was not detected in the reaction layer. Cu was later found diffused inside of the ZnAl2O4 substrates. Furthermore, the Cu-Zn compounds were detected when the copper content in Fe-Cu alloys was 10 wt% Cu. After interaction experiments, copper was decreased in all cases. Thereby, the copper evaporation and infiltration into the ZnAl2O4 substrate were considered as the reasons for copper loss. Moreover, oxygen dissolved in melt was found to have a great effect on the copper evaporation process.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1366
Author(s):  
Quentin Peter Campbell ◽  
Marco le Roux ◽  
Fardis Nakhaei

Additional moisture added in coal stockpiles due to rain and other climatic processes causes a significant problem worldwide, which leads to not only decrease in the heating value of the coal but also creates an extra efficiency penalty. Therefore, it is important to make some predictions for control of coal moisture within stockpiles after the rainfall. When the rain falls on the stockpile, it either runs off the surface or infiltrates the stockpile. The infiltrated water may evaporate from the surface, drain or stay within the stockpile. The aims of this study (parts 1 and 2) are to describe and compare the changes in coal moisture content following rainfall events. The mechanisms of runoff, infiltration and drainage after rainfall were described in the first paper of this series. In part 2 the influence of coal particle size and ambient conditions on the rate and depth of moisture evaporation within the stockpile is investigated. The laboratory experiments showed cyclic events of adsorbing moisture overnight and desorbing this moisture during the day as part of the coal surface evaporation process. The rate of evaporation from the surface of the fine coal stockpile was faster than the coarse stockpile; however, the coarse stockpile experienced a more efficient evaporation process because of its porous structure. Fine coal beds experienced evaporation only near the surface, while the maximum influencing layer of evaporation is a depth of 0.4 cm below the surface in coarse coal beds.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012019
Author(s):  
Adi Al A’assam ◽  
M.W. Ahamd

Abstract When studying the water reality and calculating the increase in the quantities of water per year, we find that there is another way to increase the percentage of water, and that is through optical reproduction. For a detailed explanation of the location of water on Earth, see the map and the data table shown below. Note that the world’s add up to water supply is almost 1.387 million cubic kilometers (332.6 cubic miles) of wate, of which more than 96% is salt water. As for fresh water, more than 96% are trapped by rivers and glaciers, and 30% are on the ground. As for the freshwater resources represented in rivers and lakes, they constitute about 93,100 cubic kilometers (22,300 cubic miles), which is about 1/150 of 1% of the total water. Rivers and lakes still make up most of the water sources that people use daily. The amount of water stored in the oceans for long periods is much more than that which moves through the water cycle. The total water supply worldwide is 1,386,000,000 cubic kilometers (321,000,000 cubic miles), of which 1,338,0, 000 cubic kilometers (332,500,000 cubic miles) are stored in the oceans at a rate of 95%, as the oceans give almost 90% of the water. Dissipated that goes to the water cycle. The photonic cloning resulting by the sun contributes to the consistency of water level. Indeed, the consistency of ocean water depends not only on the natural cycle of evaporation process of those waters to return to the oceans again, but also on the photonic cloning resulting by the sun, as experiment has vividly shown.


Sign in / Sign up

Export Citation Format

Share Document