Small Scale Yielding at a Crack Normal to the Interface Between an Elastic and a Yielding Material

1991 ◽  
Vol 239 ◽  
Author(s):  
Ming Y. He ◽  
R. M. McMeeking ◽  
Ning T. Zhang

ABSTRACTBy using the elastic singular field as a prescribed loading condition, small scale yielding solutions are obtained for a crack normal to the interface between a brittle and a ductile material. Results for both a crack in the brittle material and one in the ductile material are obtained by finite element analysis. The crack tip fields obtained by the finite element analysis are compared with the asymptotic solutions. It is found that near the tip the stress fields approach the asymptotic solutions. If the crack is in the brittle material, the high triaxial stresses are developed near the interface ahead of the crack tip.

1976 ◽  
Vol 98 (2) ◽  
pp. 146-151 ◽  
Author(s):  
D. M. Tracey

The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.


Sign in / Sign up

Export Citation Format

Share Document