brittle material
Recently Published Documents


TOTAL DOCUMENTS

422
(FIVE YEARS 55)

H-INDEX

25
(FIVE YEARS 5)

Author(s):  
Elena Ferretti ◽  
Massimo Moretti ◽  
Alberto Chiusoli ◽  
Lapo Naldoni ◽  
Francesco De Fabritiis ◽  
...  

This paper is part of a study of earthen mixtures for 3D printing of buildings. To meet the ever-growing environmental needs, the focus of the paper is on a particular type of biocomposite for the stabilization of earthen mixtures—the rice husk-lime biocomposite—and on how to enhance its effect on the long-term mechanical properties of the hardened product. Having assumed that the shredding of the vegetable fiber is precisely one of the possible ways to improve the mechanical properties, we compared the results of uniaxial compression tests performed on cubic specimens made with both shredded and unaltered vegetable fiber, for three curing periods. The results showed that the hardened earthen mixture is not a brittle material in the strict sense, because it exhibits some peculiar behaviors, anomalous for a brittle material. However, being a “designable” material, its properties can be varied with a certain flexibility to get as close as possible to the desired ones. One of the peculiar properties of the hardened earthen mixture deserves further investigation, rather than corrections. This is the vulcanization that occurs (in a completely natural way) in the long term, thanks to the mineralization of the vegetable fiber by carbonation of the lime.


Author(s):  
Elena Ferretti ◽  
Massimo Moretti ◽  
Alberto Chiusoli ◽  
Lapo Naldoni ◽  
Francesco De Fabritiis ◽  
...  

This paper is part of a study of earthen mixtures for 3D printing of buildings. To meet the ever-growing environmental needs, the focus of the paper is on a particular type of bio-composite for the stabilization of earthen mixtures – the rice husk-lime bio-composite – and on how to enhance its effect on the long-term mechanical properties of the hardened product. Having assumed that the shredding of the vegetable fiber is precisely one of the possible ways to improve the mechanical properties, we compared the results of uniaxial compression tests performed on cubic specimens made with both shredded and raw vegetable fiber, for three curing periods. The results showed that the hardened earthen mixture is not a brittle material in the strict sense, because it exhibits some peculiar behaviors, anomalous for a brittle material. However, being a “designable” material, its properties can be varied with a certain flexibility to get as close as possible to the desired ones. One of the peculiar properties of the hardened earthen mixture deserves further investigation, rather than corrections. This is the vulcanization that occurs (in a completely natural way) in the long term, thanks to the mineralization of the vegetable fiber by carbonation of the lime.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7381
Author(s):  
Tri N. M. Nguyen ◽  
Taek Hee Han ◽  
Jun Kil Park ◽  
Jung J. Kim

In this study, we estimate the potential efficiency of waste fishing net (WFN) fibers as concrete reinforcements. Three WFN fiber concentrations (1, 2, and 3% by volume) were mixed with concrete. Compressive strength, toughness, splitting tensile strength, and biaxial flexural tests were conducted. Compressive strength decreased but other properties increased as a function of fiber proportions. According to the mechanical strength observations and the ductility number, WFN fibers yielded benefits in crack arresting that improved the postcracking behavior and transformed concrete from a brittle into a quasi-brittle material. It is inferred that WFN fiber is a recycled and eco-friendly material that can be utilized as potential concrete reinforcement.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Osamah M. G. Al-Kerttani ◽  
Ammar Mutar

AbstractThis article investigates utilization of polypropylene microfibers as reinforcement in geopolymer concrete to enhance the ductility characteristics since the geopolymer concrete is considered a brittle material. The polypropylene microfibers were added to geopolymer concrete at the fiber volume content of 0.5%, 1.0%, and 1.5%. In this article, a slump test and compressive strength were tested for geopolymer concretes to measure the effect of polypropylene microfibers on geopolymer concretes. Also, static flexural strength and dynamic loading were applied to find out the attitude of polypropylene fiber-reinforced geopolymer concrete and to measure both the deflection and number of load cycles until failure. While comparing the results with reference geopolymer concrete, all samples were tested at 28 days and, finally, a statistical test was carried out. The results concluded that the use of polypropylene microfibers improves the compressive strength and enhances the properties of polypropylene fiber-reinforced geopolymer concretes, increases the loading for the appearance of the first crack, and decreases the deflection of polypropylene fiber-reinforced geopolymer concretes compared with reference geopolymer concrete.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1759
Author(s):  
Gennady Kolesnikov

A diversity of quasi-brittle materials can be observed in various engineering structures and natural objects (rocks, frozen soil, concrete, ceramics, bones, etc.). In order to predict the condition and safety of these objects, a large number of studies aimed at analyzing the strength of quasi-brittle materials has been conducted and presented in publications. However, at the modeling level, the problem of estimating the rate and acceleration of destruction of a quasi-brittle material under loading remains relevant. The purpose of the study was to substantiate the function of damage to a quasi-brittle material under uniaxial compression, determine the rate, acceleration and jerk of the damage process, and also to apply the results obtained to predicting the destruction of trabecular bone tissue. In accordance with the purpose of the study, the basic concepts of fracture mechanics and standard methods of mathematical modeling were used. The proposed model is based on the application of the previously obtained differentiable damage function without parameters. The results of the study are presented in the form of plots and analytical relations for computing the rate, acceleration and jerk of the damage process. Examples are given. The predicted peak of the combined effect of rate, acceleration and jerk of the damage process are found to be of practical interest as an additional criterion for destruction. The simulation results agree with the experimental data known from the available literature.


Sign in / Sign up

Export Citation Format

Share Document