The Reduction of The Defect Density in CdTe Buffer Layers for The Growth of HgCdTe Infrared Photodiodes on Si (211) Substrates

1997 ◽  
Vol 487 ◽  
Author(s):  
H.-Y. Wei ◽  
L. Salamanca-Riba ◽  
N. K. Dhar

CdTe epilayers were grown by molecular beam epitaxy on As-passivated nominal (211) Si substrates using thin interfacial ZnTe layers. By using thin recrystallized (initially amorphous) ZnTe buffer layers, we utilized migration enhanced epitaxy (MEE) in the ZnTe layer and overcome the tendency toward three dimensional nucleation. The threading dislocation densities in 8–9 μm thick CdTe films deposited on the recrystallized amorphous ZnTe films were in the range of 2 to 5 × 105 cm−2. In addition to the reduction of threading dislocation density, the interface between the ZnTe layers and the Si substrate is much smoother and the microtwin density is an order of magnitude lower than in regular MEE growth. In order to understand the initial nucleation mechanism of the ZnTe on the As precursor Si surface, we also grew ZnTe epilayers on Te precursor treated Si substrates. The growth mode, microtwin density, and threading dislocation density are compared for films grown on Si substrates with different surface precursors and grown by different growth methods.

1997 ◽  
Vol 484 ◽  
Author(s):  
H.-Y. Wei ◽  
L. Salamanca-Riba ◽  
N. K. Dhar

CdTe epilayers were grown by molecular beam epitaxy on As-passivated nominal (211) Si substrates using thin interfacial ZnTe layers. By using thin recrystallized (initially amorphous) ZnTe buffei layers, we utilized migration enhanced epitaxy (MEE) in the ZnTe layer and overcome the tendency toward three dimensional nucleation. The threading dislocation densities in 8–9 tm thick CdTe films deposited on the recrystallized amorphous ZnTe films were in the range of 2 to 5 × 105 cm−2. In addition to the reduction of threading dislocation density, the interface between the ZnTe layers and the Si substrate is much smoother and the microtwin density is an order of magnitude lower than in regular MEE growth. In order to understand the initial nucleation mechanism of the ZnTe on the As precursor Si surface, we also grew ZnTe epilayers on Te precursor treated Si substrates. The growth mode, microtwin density, and threading dislocation density are compared for films grown on Si substrates with different surface precursors and grown by different growth methods.


1990 ◽  
Vol 198 ◽  
Author(s):  
M.M. Al-Jassim ◽  
R.K. Ahrenkiel ◽  
M.W. Wanlass ◽  
J.M. Olson ◽  
S.M. Vernon

ABSTRACTInP and GaInP layers were heteroepitaxially grown on (100) Si substrates by atmospheric pressure MOCVD. TEM and photoluminescence (PL) were used to measure the defect density and the minority carrier lifetime in these structures. The direct growth of InP on Si resulted in either polycrystalline or heavily faulted single-crystal layers. The use of GaAs buffer layers in InP/Si structures gave rise to significantly improved morphology and reduced the threading dislocation density. The best InP/Si layers in this study were obtained by using GaAs-GaInAs graded buffers. Additionally, the growth of high quality GaInP on Si was demonstrated. The minority carrier lifetime of 7 ns in these layers is the highest of any III-V/Si semiconductor measured in our laboratory.


1990 ◽  
Vol 198 ◽  
Author(s):  
Hyunchul Sohn ◽  
Eicke R. Weber ◽  
Jay Tu ◽  
Henry P. Lee ◽  
Shy Wang

ABSTRACTThe growth of GaAs films by MBE on mesa-type patterned Si substrates has been investigated. Mesa widths were varied from 10 µm to 200 µm and were prepared using chemical etching with Si3N4 masks and reactive ion etching. The residual stress in the epitaxial layer was estimated using low temperature (7K) photoluminescence and the defect distribution was studied by cross sectional TEM, dislocation densities were in addition determined by etch pits. The residual stress and the dislocation density decreased monotonically with the reduction of growth area. By the incorporation of strained layers with the reduction of growth area, the etch pit density in GaAs layers on mesas was reduced further.


MRS Advances ◽  
2018 ◽  
Vol 3 (18) ◽  
pp. 931-936
Author(s):  
F. B. Abas ◽  
R. Fujita ◽  
S. Mouri ◽  
T. Araki ◽  
Y. Nanishi

ABSTRACTThe objective of this study was to investigate the relationship between the thickness of N radical irradiated InN template with crystallographic quality and electrical properties of InN film grown with the previously proposed method, in situ surface modification by radical beam irradiation. In this study, three InN samples were grown with this method on different thickness of irradiated templates. The crystallographic quality of InN films was analyzed by X-ray diffraction and the electrical properties were studied by Hall effect measurement. InN grown on 100 nm thick irradiated template shows lower full-width at half-maximum of X-ray rocking curves and lower carrier concentration compared to InN grown on 200 nm and 450 nm thick irradiated templates. Transmission electron microscopy revealed that threading dislocation density in the InN film decreased by an order of magnitude to ∼4.6×109cm-2. These results suggest that this method is possible for reduction of threading dislocation density in InN and the thickness of irradiated template should be minimized for higher crystallographic quality and electrical properties of the entire InN film.


1997 ◽  
Vol 486 ◽  
Author(s):  
Srikanth B. Samavedam ◽  
Matthew T. Currie ◽  
Thomas A. Langdo ◽  
Steve M. Ting ◽  
Eugene A. Fitzgerald

AbstractGermanium (Ge) photodiodes are capable of high quantum yields and can operate at gigahertz frequencies in the 1–1.6 μm wavelength regime. The compatibility of SiGe alloys with Si substrates makes Ge a natural choice for photodetectors in Si-based optoelectronics applications. The large lattice mismatch (≈4%) between Si and Ge, however, leads to the formation of a high density of misfit and associated threading dislocations when uniform Ge layers are grown on Si substrates. High quality Ge layers were grown on relaxed graded SiGe/Si layers by ultra-high vacuum chemical vapor deposition (UHVCVD). Typically, as the Ge concentration in the graded layers increases, strain fields from underlying misfit dislocations result in increased surface roughness and the formation of dislocation pile-ups. The generation of pile-ups increases the threading dislocation density in the relaxed layers. In this study the pileup formation was minimized by growing on miscut (001) substrates employing a chemical mechanical polishing (CMP) step within the epitaxial structure. Other problems such as the thermal mismatch between Si and Ge, results in unwanted residual tensile stresses and surface microcracks when the substrates are cooled from the growth temperature. Compressive strain has been incorporated into the graded layers to overcome the thermal mismatch problem, resulting in crack-free relaxed cubic Ge on Si at room temperature. The overall result of the CMP step and the growth modifications have eliminated dislocation pile-ups, decreased gas-phase nucleation of particles, and eliminated the increase in threading dislocation density that occurs when grading to Ge concentrations greater than 70% Ge. The threading dislocation density in the Ge layers determined through plan view transmission electron microscopy (TEM) and etch pit density (EPD) was found to be in the range of 2 × 106/cm2. Ge p-n diodes were fabricated to assess the electronic quality and prove the feasibility of high quality photodetectors on Si substrates.


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1420005 ◽  
Author(s):  
Tedi Kujofsa ◽  
John E. Ayers

Metamorphic semiconductor devices are commonly fabricated with linearly-graded buffer layers, but equilibrium modeling studies suggest that S-graded buffers, following a normal cumulative distribution function, may enable lower threading defect densities. The present work involves a study of threading dislocation density behavior in S-graded ZnS x Se 1-x buffer layers for metamorphic devices on mismatched GaAs (001) substrates using a kinetic model for lattice relaxation and misfit-threading dislocation interactions. The results indicate that optimization of an S-graded buffer layer to minimize the surface threading dislocation density requires adjustment of the standard deviation parameter and cannot be achieved by varying the buffer thickness alone. Furthermore, it is possible to tailor the design of the S-graded buffer layer in such a way that the density of mobile threading dislocations at the surface vanishes. Nonetheless, the threading dislocation behavior in these heterostructures is quite complex, and a full understanding of their behavior will require further experimental and modeling studies.


1989 ◽  
Vol 160 ◽  
Author(s):  
S. Sharan ◽  
J. Narayan ◽  
J. C. C. Fan

AbstractDefects such as dislocations and interfaces play a crucial role in the performance of heterostracture devices. The full potential of GaAs on Si heterostructures can only be realized by controlling the defect density. The reduction of threading dislocations by the use of strained layer superlattices has been studied in these heterostructures. Several superlattice structures have been used to reduce the density of threading dislocations in the GaAs epilayer. The use of strained layer superlattices in conjunction with rapid thermal annealing was most effective in reducing threading dislocation density. Transmission electron microscopy has been used to study the dislocation density reduction and the interaction of threading dislocations with the strained layers. A model has been developed based on energy considerations to determine the critical thickness required for the bending of threading dislocations.


Sign in / Sign up

Export Citation Format

Share Document