Fiber Optic Sensing the Behavior of Prestressed-Prism-Reinforced Composite Concrete Beams for Bridge Deck Application

1997 ◽  
Vol 503 ◽  
Author(s):  
Edward G. Nawy ◽  
P. E.

ABSTRACTThis investigation involves the identification and use of a novel type of fiber optic sensors in monitoring the deformation behavior of critical sections of the structural concrete elements and transforming them into smart systems. Basic operating principles of the Bragg-grating sensors identified in this work are proved to be feasible. Deformational behavior was studied of high performance concrete composite beams reinforced with prestressed prisms and instrumented with Bragg Grating fiber optic sensors. The experimental techniques using those sensors for evaluating their behavior at service load stages, and the potential of this technique for on-line, real-time monitoring of existing constructed concrete structures are presented.

Author(s):  
Edward G. Nawy ◽  
Benxian Chen

This investigation involves the identification and use of a novel type of fiber optic sensor in nondestructive testing and monitoring of the deformation behavior of critical sections of structural concrete elements and transforming them into smart systems. Deformational behavior of high-performance-concrete continuous-composite beams reinforced with prestressed prisms was studied and instrumented using fiber optic Bragg grating sensors. Such elements are useful as components of continuous bridge decks where prevention of cracking in the negative moment regions is essential to maintaining the integrity of a bridge. An experimental technique using Bragg grating sensors to evaluate the behavior of the investigated elements at service load stages and the potential of this technique for on-line, real-time monitoring of existing constructed concrete structures are presented. Four continuous beams 5791 mm (19 ft) long with two equal 2743-mm (9-ft) clear spans were tested to failure. High-performance concrete with compressive strength fc’ in excess of 90 MPa (13,000 psi) was used for both the precast prestressed prisms and the main beams cast in situ. Experimental results were compared with theoretical evaluations obtained from nonlinear analysis. Parametric study was conducted to further identify the primary variables that affected the structural performance of such composite T-sections.


2009 ◽  
Vol 419-420 ◽  
pp. 1-4 ◽  
Author(s):  
Ying Wei Yun ◽  
Ii Young Jang ◽  
Seong Kyum Kim ◽  
Seung Min Park

High-performance concrete (HPC) as a promising construction material has been widely used in infrastructures and high-rise buildings etc. However, its pretty high autogenous shrinkage (AS) especially in its early age becomes one of the key problems endangering long-time durability of HPC structures. This paper carried out the early age AS research of large scaled HPC column specimens by embedded Fiber Bragg-Grating (FBG) strain sensor. Temperature compensation for FBG strain sensor by thermocouple was also attempted in this paper, and the results were reasonable and acceptable comparing with the result compensated by FBG temperature sensor. Reinforcement influence, size effect and temperature effect on HPC AS were also analyzed respectively in this paper.


Author(s):  
Madina Shaimerdenova ◽  
Aliya Bekmurzayeva ◽  
Marzhan Sypabekova ◽  
Yntymak Abukhanov ◽  
Daniele Tosi

2019 ◽  
Vol 220 ◽  
pp. 03007
Author(s):  
Anton Chernikov ◽  
Dmitriy Kochuev ◽  
Kirill Khorkov ◽  
Ruslan Chkalov ◽  
Nikolay Davydov

The paper presents the results of fiber Bragg gratings fabrication by femtosecond laser radiation using point-by-point and line-by-line inscription methods. The approach makes it possible to fabricate the second and higher diffraction orders fiber Bragg gratings, which can be used as sensitive elements of fiber-optic sensors.


1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari

ABSTRACTIt is possible to monitor the initiation and progress of various mechanical or environmentally induced perturbations in concrete elements by way of fully integrated optical fiber sensors. Geometric adaptability and ease by which optical fibers can be embedded within concrete elements has led to the development of a number of innovative applications for concrete elements. This article is intended for a brief introduction into the theories, principles, and applications of fiber optic sensors as they pertain to applications in concrete.. However, due to the fact that the transduction mechanism in optical fibers is invariant of the materials employed, the principles introduced here also correspond to other structural materials. The only application related differences among various materials pertain to sensitivity and choice of optical fiber sensor types.


2011 ◽  
Vol 82 ◽  
pp. 758-763
Author(s):  
Eike Wolfram Klingsch ◽  
Andrea Frangi ◽  
Mario Fontana

The paper presents results of experimental and numerical analyses on the fire behavior of concrete elements protected by sprayed protective linings. Particular attention is given to high- (HPC) and ultrahigh performance concrete (UHPC), as HPC and UHPC tend to exhibit explosive spalling in fire due to low porosity. The results provide basic input data for the development of simplified rules for the fire design of concrete structures protected by sprayed protective linings.


Sign in / Sign up

Export Citation Format

Share Document