strain sensor
Recently Published Documents


TOTAL DOCUMENTS

2497
(FIVE YEARS 888)

H-INDEX

76
(FIVE YEARS 23)

2022 ◽  
Vol 176 ◽  
pp. 114412
Author(s):  
Xiaoqi Gong ◽  
Chenglong Fu ◽  
Nur Alam ◽  
Yonghao Ni ◽  
Lihui Chen ◽  
...  

NANO ◽  
2022 ◽  
Author(s):  
Delin Chen ◽  
Hongmei Zhao ◽  
Weidong Yang ◽  
Dawei Wang ◽  
Xiaowei Huang ◽  
...  

Flexible/stretchable strain sensors have attracted much attention due to their advantages for human-computer interaction, smart wearable and human monitoring. However, there are still great challenges on gaining super durability, quick response, and wide sensing range. This paper provides a simple process to obtain a sensor which is based on graphene (GR)/carbon nanotubes (CNTs) and Ecoflex hybrid, which demonstrates superb endurance (over 1000 cycles at 100% strain), remarkable sensitivity (strain over 125% sensitivity up to 20) and wide sensing range (175%). All results indicate that it is capable for human movement monitoring, such as finger and knee bending and pulse beat. Most importantly, it can be used as a warning function for the night cyclist’s ride. This research provides the feasibility of using this sensor for practical applications.


2022 ◽  
Vol 2 ◽  
Author(s):  
Yanyan Fan ◽  
Hongbin Zhao ◽  
Yifan Yang ◽  
Yi Yang ◽  
Tianling Ren ◽  
...  

Graphene-based stretchable and flexible strain sensors are one of the promising “bridges” to the biomedical realm. However, enhancing graphene-based wearable strain sensors to meet the demand of high sensitivity, broad sensing range, and recoverable structure deformation simultaneously is still a great challenge. In this work, through structural design, we fabricated a simple Ecoflex/Overlapping Graphene/Ecoflex (EOGE) strain sensor by encapsulating a graphene sensing element on polymer Ecoflex substrates using a drop-casting method. The EOGE strain sensor can detect stretching with high sensitivity, a maximum gauge factor of 715 with a wide strain range up to 57%, and adequate reliability and stability over 1,000 cycles for stretching. Moreover, the EOGE strain sensor shows recoverable structure deformation, and the sensor has a steady response in the frequency disturbance test. The good property of the strain sensor is attributed to the resistance variation induced by the overlap and crack structure of graphene by structural design. The vibrations caused by sound and various body movements have been thoroughly detected, which exhibited that the EOGE strain sensor is a promising candidate for wearable biomedical electronic applications.


2022 ◽  
Author(s):  
Peide Liu ◽  
Zhichen Hu ◽  
Lijie Yang ◽  
Yi Zheng

2022 ◽  
pp. 1-1
Author(s):  
Jiajie Wen ◽  
Xiangyu Yan ◽  
Xu Gao ◽  
Kaiwei Li ◽  
Jiajia Wang

2022 ◽  
Vol 162 ◽  
pp. 106593
Author(s):  
Rubai Luo ◽  
Xue Li ◽  
Haibin Li ◽  
Bin Du ◽  
Shisheng Zhou

Sign in / Sign up

Export Citation Format

Share Document