A Modeling Study of General Corrosion of Copper Overpack for Geological Isolation of High-Level Radioactive Waste

1999 ◽  
Vol 556 ◽  
Author(s):  
A. Honda ◽  
N Taniguchi ◽  
H. Ishikawa ◽  
M. Kawasaki

AbstractThis paper describes a modeling study for general corrosion of copper which is a candidate material for high-level radioactive waste overpacks. The model is a mixed-potential model combined with diffusive transport of reactants and reaction products. The rest potential and corrosion rate of copper in aerated solution were measured while controlling the thickness of a diffusive solution layer on the copper surface using a rotating-disk electrode. Experimental data were used for validation of the model.

2006 ◽  
Vol 932 ◽  
Author(s):  
Bruno Kursten ◽  
Frank Druyts

ABSTRACTThe underground formation that is currently being considered in Belgium for the permanent disposal of high-level radioactive waste and spent fuel is a 30-million-year-old argillaceous sediment (Boom Clay layer). This layer is located in the northeast of Belgium and extending under the Mol-Dessel nuclear site at a depth between 180 and 280 meter.Within the concept for geological disposal (multibarrier system), the metallic container is the primary engineered barrier. Its main goal is to contain the radioactive waste and to prevent the groundwater from coming into contact with the wasteform by acting as a tight barrier. The corrosion resistance of container materials is an important aspect in ensuring the tightness of the metallic container and therefore plays an important role in the safe disposal of HLW. The metallic container has to provide a high integrity, i.e. no through-the-wall corrosion should occur, at least for the duration of the thermal phase (500 years for vitrified HLW and 2000 years for spent fuel).An extensive corrosion evaluation programme, sponsored by the national authorities and the European Commission, was started in Belgium in the mid 1980's. The main objective was to evaluate the long-term corrosion performance of a broad range of candidate container materials. In addition, the influence of several parameters, such as temperature, oxygen content, groundwater composition (chloride, sulphate and thiosulphate), γ-radiation, … were investigated. The experimental approach consisted of in situ experiments (performed in the underground research facility, HADES), electrochemical experiments, immersion experiments and large scale demonstration tests (OPHELIE, PRACLAY). Degradation modes considered included general corrosion, localised corrosion (pitting) and stress corrosion cracking.This paper gives an overview of the more relevant experimental results, gathered over the past 25 years, of the Belgian programme in the field of container corrosion.


1994 ◽  
Vol 187 (1) ◽  
pp. 19-24 ◽  
Author(s):  
V. Guyon ◽  
A. Guy ◽  
J. Foos ◽  
R. Chomel ◽  
T. Moutarde ◽  
...  

2003 ◽  
pp. 203-208
Author(s):  
Hideo KOMINE ◽  
Nobuhide OGATA ◽  
Akira NAKASHIMA ◽  
Hajime TAKAO ◽  
Hiroyoshi UEDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document