underground research laboratory
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 40)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 1 ◽  
pp. 141-142
Author(s):  
Naila Ait-Mouheb ◽  
Yuankai Yang ◽  
Luc R. Van Loon ◽  
Martin A. Glaus ◽  
Guido Deissmann ◽  
...  

Abstract. The assessment of the safety of a deep geological repository (DGR) for high-level radioactive wastes over assessment time scales of up to 1 million years requires an in-depth understanding of the multi-scale coupled processes that affect the repository system evolution over time, to reduce uncertainties and conservatism in safety analyses. This is in particular required with respect to the challenges of a comparative assessment of different repository concepts in different host rocks within the process of a site selection for a DGR for heat-generating radioactive wastes in Germany. The collaborative project “Integrity of nuclear waste repository systems – Cross-scale system understanding and analysis (iCross)” conducted jointly by five research centres of the Helmholtz Association and co-funded by the Initiative and Networking Fund of the Helmholtz Association and the Federal Ministry of Education and Research (BMBF) has been initiated with the overall objective to improve the understanding of coupled thermal-hydraulic-mechanical-chemical-(micro)biological (THMCB) processes and to develop simulation tools that enable a holistic close to reality description of the long-term evolution of the repository system. Geological formations, such as those foreseen as potential host rocks for DGRs, and their surroundings are heterogeneous on various length scales ranging from nanometers to kilometers. Therefore, the aim of this work in the context of iCross is to evaluate the effects of mineralogical, geochemical and microstructural heterogeneities of repository host rocks on radionuclide transport in the repository far field, using the sandy facies of the Opalinus clay (SF-OPA) from the Mont Terri underground research laboratory (St. Ursanne, Switzerland) as an example. Here, we address in particular the migration behaviour of Ra-226 as an important radionuclide to be considered in safety cases for deep geological disposal of spent nuclear fuel. To assess the impact of the heterogeneities in SF-OPA on radionuclide transport, a complementary approach combining microstructural characterisation methods, experimental techniques for the determination of transport parameters of the rock matrix and the mobility of Ra-226 with innovative developments in reactive transport modelling on the pore and continuum scales was pursued. One of the results was that although the limited clay content in SF-OPA decreases the total amount of Ra bound to the illite phase, the solid solutions of sulphate and carbonate compensate for this and provide a major fixation mechanism.


2021 ◽  
Vol 1 ◽  
pp. 103-104
Author(s):  
Nikoleta Morelová ◽  
Kathy Dardenne ◽  
Nicolas Finck ◽  
Frank Heberling ◽  
Volker Metz ◽  
...  

Abstract. Carbon steel is a potential canister material for the disposal of high-level radioactive waste in deep geological repositories in clays and clay rocks. Bentonite is considered as a potential backfill material for those multi-barrier systems. To predict the long-term performance and for safety assessment the knowledge of canister corrosion behavior is important. The corrosion products formed and mineralogically altered bentonite at the canister/bentonite interface can potentially provide an additional barrier against radionuclide migration. In-situ corrosion experiments were performed at the Mont Terri underground research laboratory. Coupons of carbon steel were embedded in Volclay MX-80 bentonite with controlled densities, installed in a borehole under simulated repository and anaerobic conditions and exposed to natural Opalinus clay porewater for a period up to 5.5 years (Smart et al., 2017). In the present study, the bentonite layer at the canister/bentonite interface was characterized by complementary microscopic and spectroscopic techniques (XPS, SEM-EDX, µXANES) under anoxic conditions. The interface revealed reddish-brown staining up to 2 mm depth into the bentonite in the zone adjacent to the steel in all three obtained samples. The XPS analysis revealed formation of sulfides at the interface consisting of iron and other trace metals present in the steel. The SEM-EDX analyses of the interface (embedded cross-cut with steel removed) showed different degrees of calcium enrichment in the bentonite adjacent to the metal for various samples. The µXRF analysis performed on the bentonite at the interface showed a scarce or distinct calcium-enriched rim up to 100 µm into the bentonite and iron-enriched rim depending on the sample (one sample in Fig. 1), while µXANES analysis revealed formation of iron silicate compounds in the reacted reddish-brown zone. The iron appears to displace calcium from the interlayer sites in montmorillonite. The calcium then precipitates at the interface as calcite. The extent of this process seems to be strongly related to the bentonite density. The steel coupon was removed prior to embedding, with the location marked as resin in Fig. 1. A line scan from the edge towards the bulk bentonite did not indicate any systematic gradient in the Fe2+/3+ ratio. The formation of mixed Fe2+/3+ silicate compounds appears to be heterogeneous. This work contributes to an increasing understanding of steel corrosion mechanisms in clay, which can improve the robustness of canister lifetime predictions.


2021 ◽  
Vol 1 ◽  
pp. 89-89
Author(s):  
Nikitas Diomidis ◽  
Bharti Reddy

Abstract. Since 2012, a long-term in situ corrosion experiment (IC-A) has been conducted in the Mont Terri Underground Research Laboratory in Switzerland. The aims of the project with international partners are to confirm the long-term anaerobic corrosion rate of carbon steel and copper in compacted bentonite under repository-relevant environmental conditions, to gather in situ corrosion data supporting canister lifetime predictions, to provide confirmation of the effect of the bentonite buffer on microbial activity and microbially influenced corrosion, and to study the effects of welding (steel) and deposition technique (copper) on the corrosion properties of these candidate materials for disposal canisters. To date, carbon steel and cold sprayed and electrodeposited copper coatings have been retrieved after different exposure periods up to 3 years and characterised to establish the composition of the corrosion product, the morphology of the corroded surface, and to measure the rate of corrosion. For carbon steel specimens, a complex corrosion product was identified, consisting predominantly of magnetite. Low average anaerobic corrosion rates were measured for carbon steel and a very modest amount of alteration was identified on copper. The density and the initial form of the bentonite had a small influence on the rate of corrosion, across all materials.


Author(s):  
Alexandr Manevich ◽  
Vladimir Kaftan ◽  
Roman Shevchuk ◽  
Danil Urmanov

Within the boundaries of the Nizhne-Kansk granite-gneiss massif, which directly borders on the Atamanovskiy branch of the Yenisei Ridge, the building of an underground research laboratory for validating the safety of disposal of high-level radioactive waste began in 2019. In 2010, researchers of the Mining and Chemical Combine at Zheleznogorsk and the Geophysical Center, Russian Academy of Sciences, organized a satellite geodetic network within the boundaries of the Nizhne-Kansk massif; this network included 30 GNSS stations intended for observations of modern crustal movements.The purpose of this study is to determine vectors and simulate the field of horizontal modern crustal movements from measurements made in 2010 - 2019. The tasks included: creating a catalogue of displacement data; calculating and estimating horizontal velocities of modern crustal movements, modelling the horizontal velocity field using artificial neural networks, developing a kinematic model of the area and comparing it with geological survey data.As a result, the resulting model was found to be in good agreement with the results of structural-geological and geodynamic studies in the area. The rate of convergence between the Siberian Platform and the West Siberian Plate in the interaction zone of the southern part of the Yenisei Ridge can be estimated as 2-4 mm/year. The movements of the selected area are due to sublatitudinal compression along an azimuth of 100-110 degrees. Within the selected tectonic blocks relatively low rates of modern horizontal movements of the earth's crust were obtained, which confirms the stable geodynamic regime of the structural block hosting the underground research laboratory. Thus, the results of the work demonstrate the possibility of disposal of high-level radioactive waste in the selected structural block. 


Sign in / Sign up

Export Citation Format

Share Document