The Magnetic Structure of the Rare-Earth Intermetallic Compound La3Co29Si4B10

2003 ◽  
Vol 804 ◽  
Author(s):  
Heng Zhang ◽  
M. Hofmann ◽  
S. J. Kennedy ◽  
S. J. Campbell

ABSTRACTA quaternary rare-earth intermetallic compound La3Co29Si4B10 has been synthesized and the crystal and magnetic structures investigated by neutron diffraction over the temperature range 7–300 K. Rietveld refinements of the neutron diffraction patterns demonstrate that La3Co29Si4B10 is tetragonal and isostructural with Nd3Ni29Si4B10. The magnetic scattering indicates that the moments of the Co sublattice are collinear and lie in the basal plane. The mean magnetic moment for the Co atoms is μ ∼ 0.5 μB, or 13.6μB/F.U., in agreement with magnetization measurements.

2009 ◽  
Vol 105 (7) ◽  
pp. 07A911 ◽  
Author(s):  
S. K. Malik ◽  
Jagat Lamsal ◽  
R. L. de Almeida ◽  
S. Quezado ◽  
W. B. Yelon ◽  
...  

Author(s):  
Stanisław Baran ◽  
Aleksandra Deptuch ◽  
Andreas Hoser ◽  
Bogusław Penc ◽  
Yuriy Tyvanchuk ◽  
...  

The crystal and magnetic structures in R 2Ni1.78In (R = Ho, Er and Tm) have been studied by neutron diffraction. The compounds crystallize in a tetragonal crystal structure of the Mo2FeB2 type (space group P4/mbm). At low temperatures, the magnetic moments, localized solely on the rare earth atoms, form antiferromagnetic structures described by the propagation vector k = [kx , kx , ½], with kx equal to ¼ for R = Er and Tm or 0.3074 (4) for R = Ho. The magnetic moments are parallel to the c axis for R = Ho or lie within the (001) plane for R = Er and Tm. The obtained magnetic structures are discussed on the basis of symmetry analysis. The rare earth magnetic moments, determined from neutron diffraction data collected at 1.6 K, are 6.5 (1) μB (Er) and 6.09 (4) μB (Tm), while in the incommensurate modulated magnetic structure in Ho2Ni1.78In the amplitude of modulation of the Ho magnetic moment is 7.93 (8) μB. All these values are smaller than those expected for the respective free R 3+ ions. A symmetry analysis of the magnetic structure in Tb2Ni1.78In is also included, as such information is missing from the original paper [Szytuła, Baran, Hoser, Kalychak, Penc & Tyvanchuk (2013). Acta Phys. Pol. A, 124, 994–997]. In addition, the results of magnetometric measurements are reported for Tm2Ni1.78In. The compound shows antiferromagnetic ordering below the Néel temperature of 4.5 K. Its magnetic properties are found to originate from magnetic moments localized solely on the thulium atoms (the nickel atoms remain non-magnetic in Tm2Ni1.78In). The reduction of rare earth magnetic moments in the ordered state in R 2Ni1.78In (R = Tb, Ho, Er and Tm) and the change in direction of the moments indicate the influence of the crystalline electric field (CEF) on the stability of the magnetic order in the investigated compounds.


1998 ◽  
Vol 10 (50) ◽  
pp. 11703-11712 ◽  
Author(s):  
Keitaro Tezuka ◽  
Yukio Hinatsu ◽  
Yutaka Shimojo ◽  
Yukio Morii

2006 ◽  
Vol 112 ◽  
pp. 39-60 ◽  
Author(s):  
A. Szytuła

The work is a review paper concerning application of neutron diffraction methods for condensed matter investigations and for characterizing modern materials, namely for crystal and magnetic structures determination, small-angle scattering, investigations of chemical reactions and some practical applications. It addresses briefly a few of more prominent techniques that are important for materials scientists. In the first part of the work information on the methods and ways of interpretation of obtained results is given. Then the results for some chosen compounds are presented.


2002 ◽  
Vol 10 (4) ◽  
pp. 323-327 ◽  
Author(s):  
D. Mazzone ◽  
P. Riani ◽  
G. Zanicchi ◽  
M. Napoletano ◽  
F. Canepa

Sign in / Sign up

Export Citation Format

Share Document