Electrochemical Hydrogen Adsorption/Storage in Pure and Functionalized Single Wall Carbon Nanotubes

2004 ◽  
Vol 837 ◽  
Author(s):  
Yubing Wang ◽  
Zafar Iqbal

AbstractSelf-assembled sheets of single wall carbon nanotubes (SWNTs) were used as the working electrode for electrochemical hydrogen adsorption/storage in a three-electrode cell in 6M aqueous KOH or HNO3 solution. Hydrogen adsorption studies on pristine SWNTs, as well as SWNTs functionalized with electrodeposited nanoparticles of magnesium (Mg) and cobalt (Co), have been performed. The adsorbed hydrogen (uncorrected for possible water uptake via nanocapillarity) was measured to be 2.5 weight percent by thermogravimetric analysis (TGA) on a Mg-functionalized sample and 3.2 weight percent by Prompt-Gamma Activation Analysis (PGAA) for a pristine sample charged for 20 hrs. Weight loss occurs in the 105° to 125°C temperature range for both sample types. Hydrogen in Co-functionalized SWNTs and 6M HNO3 electrolyte appears to be strongly chemisorbed as indicated by the appearance of a C-H stretching line in the Fourier-transform infrared spectrum (FTIR) and absence of a desorption peak in the TGA data in the 25° to 600°C temperature range. Thermopower measurements scale with the TGA data and suggest that hydrogen uptake is associated with partial charge transfer. Ex-situ Raman spectroscopy shows a reproducible downshift of the SWNT tangential stretching mode consistent with charge transfer or chemisorption on electrochemical charging, and a substantial decrease under some conditions in resonance-enhanced intensity with increasing charging time. A SWNT sheet electrochemically coated with the conducting polymer polyaniline and then charged in 6M KOH shows possible hydrogen uptake of 1.5 weight % that desorbs at 70°C.

2004 ◽  
Vol 855 ◽  
Author(s):  
S. Gupta ◽  
M. Hughes ◽  
J. Robertson

ABSTRACTElectrochemical tuning of single-wall carbon nanotubes has been investigated using in situ Raman spectroscopy. We built a linear actuator from single-wall carbon nanotube mat and studied in several alkali metal (Li, Na, and K) and alkaline earth (Ca) halide solutions. The variation of bonding with electrochemical biasing was monitored using in situ Raman. This is since Raman can detect changes in C-C bond length: the radial breathing mode (RBM) at ∼190 cm−1 varies inversely with the nanotube diameter and the G band at ∼1590 cm−1 varies with the axial bond length. In addition, the intensities of both the modes vary significantly in a nonmonotonic manner pointing at the emptying/depleting or filling of the bonding and anti-bonding states - electrochemical charge injection. We discuss the variation of spectroscopic observables (intensity/frequency) of these modes providing valuable information on the charge transfer dynamics on the single-wall carbon nanotubes mat surface. We found the in-plane compressive strain (∼ -0.25%) and the charge transfer per carbon atom (fc ∼ -0.005) as an upper bound for the electrolytes used i.e. CaCl2. These results can be quantitatively understood in terms of the changes in the energy gaps between the one-dimensional van Hove singularities in the electron density of states arising possibly due to the alterations in the overlap integral of π bonds between the p orbitals of the adjacent carbon atoms. Moreover, the extent of variation of the absolute potential of the Fermi level or alternatively modification of band gap is estimated from modeling Raman intensity to be around 0.1 eV as an upper bound for CaCl2.


2009 ◽  
Vol 373 (30) ◽  
pp. 2588-2591 ◽  
Author(s):  
Eduardo Rangel ◽  
Gregorio Ruiz-Chavarria ◽  
L.F. Magana ◽  
J.S. Arellano

2004 ◽  
Vol 108 (1-2) ◽  
pp. 120-123 ◽  
Author(s):  
M CALLEJAS ◽  
A ANSON ◽  
A BENITO ◽  
W MASER ◽  
J FIERRO ◽  
...  

2003 ◽  
Vol 785 ◽  
Author(s):  
S. Gupta ◽  
M. Hughes ◽  
A.H. Windle ◽  
J. Robertson

ABSTRACTCarbon nanotubes-based actuator has been investigated using in situ Raman spectroscopy in order to understand the actuation mechanism and to determine associated parameters. We built an actuator from a sheet of single-wall carbon nanotubes (SWNT mat) and studied in several alkali metal (Li, Na, and K) and alkaline earth (Ca) halide solutions. Since Raman can detect changes in C-C bond length: the radial breathing mode (RBM) at ∼190 cm-1 varies inversely with the nanotube diameter and the G band at ∼1590 cm-1 varies with the axial bond length, the variation of bonding was monitored with potential. In addition, the intensities of both the modes vary with either emptying/depleting or filling of the bonding and antibonding states due to electrochemical charge injection. We discuss the variation of intensity/frequency providing valuable information on the dynamics of charge transfer on the SWNT mat surface. We found the in-plane microscopic strain (∼ -0.25%) and the charge transfer per carbon atom (fc ∼ -0.005) as an upper bound for the electrolytes used. It is demonstrated that though the present analyses does comply with the proposition made earlier, but the quantitative estimates of the associated parameters are significantly lower if compared with those of reported values for carbon nanotubes. Moreover, the extent of variation (i.e. coupled electro-chemo-mechanical response) does depend upon the type of counter-ion used. The cyclic voltammetry (CV) is also described briefly.


2007 ◽  
Vol 121-123 ◽  
pp. 631-636
Author(s):  
T. Li ◽  
X.B. Zhang ◽  
Y. Li ◽  
W.Z. Huang ◽  
X.Y. Tao ◽  
...  

Single-wall Carbon nanotubes (SWNTs) bonded with dodecylamine groups were obtained by chemical modification. The modified SWNTs showed improved solubility in organic solvents. Both its chemical and aggregated structure was characterized by means of FTIR and TEM. The photoconductivity of oxotitanium phthalocyanine (TiOPc) doped with the modified SWNTs was investigated by xerographic photoinduced discharge method. The results showed that the photosensitivity of the double-layered photoreceptor composed of the SWNTs/TiOPc composite as charge generation material was higher than that of pristine TiOPc, and the sensitivity increased with the content of modified SWNTs in the composites. It is the photoinduced charge transfer between TiOPc and SWNTs that contributes to the improved photosensitivity of the modified SWNTs/TiOPc composites.


Sign in / Sign up

Export Citation Format

Share Document