charge generation
Recently Published Documents


TOTAL DOCUMENTS

761
(FIVE YEARS 167)

H-INDEX

63
(FIVE YEARS 11)

Author(s):  
Hidetoshi Mizobata ◽  
Mikito Nozaki ◽  
Takuma Kobayashi ◽  
Takuji Hosoi ◽  
Takayoshi Shimura ◽  
...  

Abstract A recent study has shown that anomalous positive fixed charge is generated at SiO2/GaN interfaces by forming gas annealing (FGA). Here, we conducted systematic physical and electrical characterizations of GaN-based metal-oxide-semiconductor (MOS) structures to gain insight into the charge generation mechanism and to design optimal interface structures. A distinct correlation between the amount of FGA-induced fixed charge and interface oxide growth indicated the physical origins of the fixed charge to be defect formation driven by reduction of the Ga-oxide (GaOx) interlayer. This finding implies that, although post-deposition annealing in oxygen compensates for oxygen deficiencies and FGA passivates defect in GaN MOS structures, excessive interlayer GaOx growth leads to instability in the subsequent FGA treatment. On the basis of this knowledge, SiO2/GaOx/GaN MOS devices with improved electrical properties were fabricated by precisely controlling the interfacial oxide growth while taking advantage of defect passivation with FGA.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1381
Author(s):  
Li Zhang ◽  
Chitiphon Chuaicham ◽  
Vellaichamy Balakumar ◽  
Bunsho Ohtani ◽  
Keiko Sasaki

The Fe(III)-doped montmorillonite (Mt)/TiO2 composites were fabricated by adding Fe(III) during or after the aging of TiO2/Ti(OH)4 sol–gel in Mt, named as xFe-Mt/(1 − x)Fe-TiO2 and Fe/Mt/TiO2, respectively. In the xFe-Mt/(1 − x)Fe-TiO2, Fe(III) cations were expected to be located in the structure of TiO2, in the Mt, and in the interface between them, while Fe(III) ions are physically adsorbed on the surfaces of the composites in the Fe/Mt/TiO2. The narrower energy bandgap (Eg) lower photo-luminescence intensity were observed for the composites compared with TiO2. Better photocatalytic performance for phenol degradation was observed in the Fe/Mt/TiO2. The 94.6% phenol degradation was due to greater charge generation and migration capacity, which was confirmed by photocurrent measurements and electrochemical impedance spectroscopy (EIS). The results of the energy-resolved distribution of electron traps (ERDT) suggested that the Fe/Mt/TiO2 possessed a larger amorphous rutile phase content in direct contact with crystal anatase than that of the xFe-Mt/(1 − x)Fe-TiO2. This component is the fraction that is mainly responsible for the photocatalytic phenol degradation by the composites. As for the xFe-Mt/(1 − x)Fe-TiO2, the active rutile phase was followed by isolated amorphous phases which had larger (Eg) and which did not act as a photocatalyst. Thus, the physically adsorbed Fe(III) enhanced light adsorption and avoided charge recombination, resulting in improved photocatalytic performance. The mechanism of the photocatalytic reaction with the Fe(III)-doped Mt/TiO2 composite was proposed.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7439
Author(s):  
Safa Shoaee ◽  
Anna Laura Sanna ◽  
Giuseppe Sforazzini

Organic solar cells have the potential to become the cheapest form of electricity. Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors. Next generation photovoltaics based upon environmentally benign “green solvent” processing of organic semiconductors promise a step-change in the adaptability and versatility of solar technologies and promote sustainable development. However, high-performing OSCs are still processed by halogenated (non-environmentally friendly) solvents, so hindering their large-scale manufacture. In this perspective, we discuss the recent progress in developing highly efficient OSCs processed from eco-compatible solvents, and highlight research challenges that should be addressed for the future development of high power conversion efficiencies devices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Riccardo Ollearo ◽  
Junke Wang ◽  
Matthew J. Dyson ◽  
Christ H. L. Weijtens ◽  
Marco Fattori ◽  
...  

AbstractMetal halide perovskite photodiodes (PPDs) offer high responsivity and broad spectral sensitivity, making them attractive for low-cost visible and near-infrared sensing. A significant challenge in achieving high detectivity in PPDs is lowering the dark current density (JD) and noise current (in). This is commonly accomplished using charge-blocking layers to reduce charge injection. By analyzing the temperature dependence of JD for lead-tin based PPDs with different bandgaps and electron-blocking layers (EBL), we demonstrate that while EBLs eliminate electron injection, they facilitate undesired thermal charge generation at the EBL-perovskite interface. The interfacial energy offset between the EBL and the perovskite determines the magnitude and activation energy of JD. By increasing this offset we realized a PPD with ultralow JD and in of 5 × 10−8 mA cm−2 and 2 × 10−14 A Hz−1/2, respectively, and wavelength sensitivity up to 1050 nm, establishing a new design principle to maximize detectivity in perovskite photodiodes.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1460
Author(s):  
Myung Gi Ji ◽  
Mohammed Bazroun ◽  
In Ho Cho ◽  
W. Dennis Slafer ◽  
Rana Biswas ◽  
...  

Replica molding-based triboelectrification has emerged as a new and facile technique to generate nanopatterned tribocharge on elastomer surfaces. The “mechano-triboelectric charging model” has been developed to explain the mechanism of the charge formation and patterning process. However, this model has not been validated to cover the full variety of nanotexture shapes. Moreover, the experimental estimation of the tribocharge’s surface density is still challenging due to the thick and insulating nature of the elastomeric substrate. In this work, we perform experiments in combination with numerical analysis to complete the mechano-triboelectrification charging model. By utilizing Kelvin probe force microscopy (KPFM) and finite element analysis, we reveal that the mechano-triboelectric charging model works for replica molding of both recessed and protruding nanotextures. In addition, by combining KPFM with numerical electrostatic modeling, we improve the accuracy of the surface charge density estimation and cross-calibrate the result against that of electrostatic force microscopy. Overall, the regions which underwent strong interfacial friction during the replica molding exhibited high surface potential and charge density, while those suffering from weak interfacial friction exhibited low values on both. These multi-physical approaches provide useful and important tools for comprehensive analysis of triboelectrification and generation of nanopatterned tribocharge. The results will widen our fundamental understanding of nanoscale triboelectricity and advance the nanopatterned charge generation process for future applications.


2021 ◽  
Author(s):  
◽  
Joseph Gallaher

<p>Organic photovoltaic (OPV) cells show significant promise as a renewable energy resource capable of meeting the world’s large and growing energy needs. Increasing device efficiency is central to achieving an economically viable option for widespread applications. To this end, a better understanding of the structure and dynamics of the electronic excited states is needed. In particular, the mechanism by which excitons (electron-hole pairs) escape their Coulombic attraction and generate photocurrent is yet to be established. In this thesis ultrafast laser spectroscopy, in particular transient absorption and time-resolved photoluminescence, are used to study: exciton relaxation, morphological effects on charge separation, and the pathway leading to triplet exciton states.  In Chapter 3, a series of oligothiophenes are synthesised with well-defined conjugation lengths to act as molecular models of polymer backbone sub-units, and thereby probe exciton relaxation processes. Time-resolved photoluminescence (TRPL) and transient absorption (TA) spectroscopy measurements presented in Chapter 4 reveal emission signatures evolve from a mirror image of absorption - which lacks vibronic structure - towards a spectrally narrower and vibronically structured species on the hundreds of femtosecond to early picosecond timescale. Analysis of this spectral evolution shows that a broad distribution of torsional conformers is driven to rapidly planarize in the excited state, including in solid films. This provides evidence that both torsional relaxation and energy migration could contribute to the non-mirror image absorption-emission spectra observed in polymer thin films.  Recently, long lived TA signatures have been attributed to triplet excited states with the suggested formation pathway being similar to organic light emitting diodes, whereby non-geminate (bimolecular) charge recombination leads to the formation of both singlet and triplet states. Isolated oligothiophenes in solution provide an ideal model system to investigate the role of structural relaxation on triplet exciton formation. Through analysis of TA spectral dynamics in Chapter 5, singlet and triplet exciton populations were tracked. Restriction of the torsional relaxation increased triplet yield suggesting vibrational hot states could drive triplet formation. This model could aid in understanding triplet exciton formation in polymer-based solar cells via spin-mixing instead of non-geminate recombination.  In a series of polymer:fullerene blends, the link between the nature of polymerfullerene intermixing and charge generation pathways was investigated. It is shown in Chapter 6 that free charge generation is most efficient in a 3-phase morphology that features intimately mixed polymer:fullerene regions amongst neat polymer and fullerene phases. Distinct spectroscopic signatures made it possible to determine whether holes occupy disordered or crystalline polymer chains. TA spectral dynamics reveal the migration of holes from intermixed to pure olymer regions in 3-phase morphology blends, which contrasted with observations in 2-phase blends. The energy gradient between the intermixed and phase-pure regions may be sufficient to drive efficient separation of charge pairs initially generated in intermixed regions, with free charges subsequently percolating through these phase-pure domains.  The photophysics of a high performance polymer:polymer blend is studied in Chapter 7 in an effort to elucidate how these blends can rival their polymer:fullerene counterparts. Optical spectroscopy reveals incomplete exciton dissociation and rapid geminate recombination in the blends. This is shown to result from a largely phase-separated morphology with domains greater than the exciton diffusion length. Significant loss of charge carriers on early timescales highlights increasing polymer: polymer solar cell efficiency requires optimizing blend morphology to realise facile charge separation.  Taken together, this thesis presents a valuable spectroscopic insight into the pathway of efficient charge separation and the importance of both blend morphology and polymer structure.</p>


2021 ◽  
Author(s):  
◽  
Alexander J. Barker

<p>Organic photovoltaics (OPVs) show considerable promise as a source of low cost solar energy. Improving our understanding of the processes governing free charge photogeneration in OPVs may unlock the improvements in efficiency required for their widespread implementation. In particular, how do photogenerated charge pairs overcome their mutual columbic attraction, and what governs the branching between bound and free charge pairs that is observed to occur shortly after their creation?  Ultrafast laser techniques such as transient absorption (TA) spectroscopy are the only tools capable of probing the time scales associated with these processes (as short as 10⁻¹⁴ seconds). Challenges include achieving sufficient sensitivity to resolve the tiny signals generated in thin films under solar-equivalent excitation densities, and distinguishing and quantifying overlapping signals due to separate phenomena.  We present the development of a versatile and ultra-sensitive broadband TA spectrometer, along with a comprehensive analysis of the noise sources limiting sensitivity. Through the use of referenced shot-to-shot detection and a novel method exploiting highly chirped broadband probe pulses, we are capable of resolving changes in differential transmission < 3 × 10⁻⁶ over pump-probe delays of 10⁻¹³–10⁻⁴ seconds.  By comparing the absorption due to photogenerated charges to measurements of open-circuit voltage decay in devices under transient excitation, we show that TA is able to quantify the recombination of freely extractable charge pairs over many decades of pump-probe delay. The dependence of this recombination on excitation density can reveal the relative fraction of bound and free charge pairs. We apply this technique to blends of varying efficiency and find that the measured free charge fraction is correlated with published photocharge yields for these materials.  We access a regime at low temperature where thermalized charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The dependence of tunneling rate on distance enabled us to fit recombination dynamics to distributions of recombination rates. We identified populations of charge-transfer states and well-separated charge pairs, the yield of which is strongly correlated with the yield of free charges measured via their intensity dependent recombination. We conclude that populations of free charges are established via long-range charge separation within the thermalization timescale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we find critical charge separation distances of ~ 3–4nm in all materials.  TA spectroscopy probes the absorption of excited states, with the signal being proportional to the product of population density and absorption cross-section of the absorbing species. We show that the dependence of signal on probe pulse intensity can decouple these parameters, and apply a numerical model to determine the time-dependent absorption cross-section of photogenerated excitons in thin films of semiconducting polymers.  Collectively, this thesis presents spectroscopic tools and applications thereof that illuminate the process of free charge generation in organic photovoltaics.</p>


2021 ◽  
Author(s):  
◽  
Alexander J. Barker

<p>Organic photovoltaics (OPVs) show considerable promise as a source of low cost solar energy. Improving our understanding of the processes governing free charge photogeneration in OPVs may unlock the improvements in efficiency required for their widespread implementation. In particular, how do photogenerated charge pairs overcome their mutual columbic attraction, and what governs the branching between bound and free charge pairs that is observed to occur shortly after their creation?  Ultrafast laser techniques such as transient absorption (TA) spectroscopy are the only tools capable of probing the time scales associated with these processes (as short as 10⁻¹⁴ seconds). Challenges include achieving sufficient sensitivity to resolve the tiny signals generated in thin films under solar-equivalent excitation densities, and distinguishing and quantifying overlapping signals due to separate phenomena.  We present the development of a versatile and ultra-sensitive broadband TA spectrometer, along with a comprehensive analysis of the noise sources limiting sensitivity. Through the use of referenced shot-to-shot detection and a novel method exploiting highly chirped broadband probe pulses, we are capable of resolving changes in differential transmission < 3 × 10⁻⁶ over pump-probe delays of 10⁻¹³–10⁻⁴ seconds.  By comparing the absorption due to photogenerated charges to measurements of open-circuit voltage decay in devices under transient excitation, we show that TA is able to quantify the recombination of freely extractable charge pairs over many decades of pump-probe delay. The dependence of this recombination on excitation density can reveal the relative fraction of bound and free charge pairs. We apply this technique to blends of varying efficiency and find that the measured free charge fraction is correlated with published photocharge yields for these materials.  We access a regime at low temperature where thermalized charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The dependence of tunneling rate on distance enabled us to fit recombination dynamics to distributions of recombination rates. We identified populations of charge-transfer states and well-separated charge pairs, the yield of which is strongly correlated with the yield of free charges measured via their intensity dependent recombination. We conclude that populations of free charges are established via long-range charge separation within the thermalization timescale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we find critical charge separation distances of ~ 3–4nm in all materials.  TA spectroscopy probes the absorption of excited states, with the signal being proportional to the product of population density and absorption cross-section of the absorbing species. We show that the dependence of signal on probe pulse intensity can decouple these parameters, and apply a numerical model to determine the time-dependent absorption cross-section of photogenerated excitons in thin films of semiconducting polymers.  Collectively, this thesis presents spectroscopic tools and applications thereof that illuminate the process of free charge generation in organic photovoltaics.</p>


Sign in / Sign up

Export Citation Format

Share Document