scholarly journals Development of a method to linearize the quadratic assignment problem

2021 ◽  
Vol 2 (4 (110)) ◽  
pp. 54-61
Author(s):  
Elias Munapo

The paper presents a new powerful technique to linearize the quadratic assignment problem. There are so many techniques available in the literature that are used to linearize the quadratic assignment problem. In all these linear formulations, both the number of variables and the linear constraints significantly increase. The quadratic assignment problem (QAP) is a well-known problem whereby a set of facilities are allocated to a set of locations in such a way that the cost is a function of the distance and flow between the facilities. In this problem, the costs are associated with a facility being placed at a certain location. The objective is to minimize the assignment of each facility to a location. There are three main categories of methods for solving the quadratic assignment problem. These categories are heuristics, bounding techniques and exact algorithms. Heuristics quickly give near-optimal solutions to the quadratic assignment problem. The five main types of heuristics are construction methods, limited enumeration methods, improvement methods, simulated annealing techniques and genetic algorithms. For every formulated QAP, a lower bound can be calculated. We have Gilmore-Lawler bounds, eigenvalue related bounds and bounds based on reformulations as bounding techniques. There are four main classes of methods for solving the quadratic assignment problem exactly, which are dynamic programming, cutting plane techniques, branch and bound procedures and hybrids of the last two. The QAP has application in computer backboard wiring, hospital layout, dartboard design, typewriter keyboard design, production process, scheduling, etc. The technique proposed in this paper has the strength that the number of linear constraints increases by only one after the linearization process.

2011 ◽  
Vol 21 (2) ◽  
pp. 225-238 ◽  
Author(s):  
Jozef Kratica ◽  
Dusan Tosic ◽  
Vladimir Filipovic ◽  
Djordje Dugosija

In this paper, we propose a new genetic encoding for well known Quadratic Assignment Problem (QAP). The new encoding schemes are implemented with appropriate objective function and modified genetic operators. The numerical experiments were carried out on the standard QAPLIB data sets known from the literature. The presented results show that in all cases proposed genetic algorithm reached known optimal solutions in reasonable time.


2013 ◽  
Vol 7 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Guo Hong

Quadratic assignment problem (QAP) is one of fundamental combinatorial optimization problems in many fields. Many real world applications such as backboard wiring, typewriter keyboard design and scheduling can be formulated as QAPs. Ant colony algorithm is a multi-agent system inspired by behaviors of real ant colonies to solve optimization problems. Ant colony optimization (ACO) is one of new bionic optimization algorithms and it has some characteristics such as parallel, positive feedback and better performances. ACO has achieved in solving quadratic assignment problems. However, its solution quality and its computation performance need be improved for a large scale QAP. In this paper, a hybrid ant colony optimization (HACO) has been proposed based on ACO and particle swarm optimization (PSO) for a large scale QAP. PSO algorithm is combined with ACO algorithm to improve the quality of optimal solutions. Simulation experiments on QAP standard test data show that optimal solutions of HACO are better than those of ACO for QAP.


2006 ◽  
Vol 18 (4) ◽  
pp. 433-443 ◽  
Author(s):  
Jean-François Cordeau ◽  
Manlio Gaudioso ◽  
Gilbert Laporte ◽  
Luigi Moccia

Sign in / Sign up

Export Citation Format

Share Document