scholarly journals Problems of electromagnetic compatibility of powerful energy associations during mass connection of renewable energy sources

Author(s):  
Yu.A. Papaika ◽  
O.G. Lysenko ◽  
A.V. Bublikov ◽  
I.G. Olishevskiy

Purpose. Analysis of the problem of energy efficiency and electromagnetic compatibility of powerful energy associations with nonlinear loads and renewable energy sources. Finding promising ways to increase energy efficiency of power supply systems. Methodology. Mathematical modeling of electromagnetic compatibility. Findings. The analysis of the problem of energy efficiency and electromagnetic compatibility of powerful energy associations with nonlinear loads and renewable energy sources allows us to formulate the following provisions that determine the objectives of this study. A promising way to increase the energy efficiency of power supply systems is the introduction of refined methods of analysis and forecasting of electrical modes of industrial enterprises, as well as indicators of voltage quality and reliability of electrical equipment. Originality.  Although the problem of electromagnetic compatibility has been the subject of numerous domestic and foreign studies, it should be noted that most of these works consider the processes of generating electromagnetic interference in the electrical network without reference to the technological schedules of electrical equipment. Practical value.  One of the electromagnetic effects, which is manifested in the operation of frequency converters, are significant levels of interharmonics and higher harmonics, which are generated in the electrical network and contribute to the growth of electricity losses and reduce the service life of electrical equipment. However, the regularities connecting the parameters of the power system and the modes of powerful industrial converters have not been studied, and the substantiation of the parameters of a rational energy efficient mode of the power supply system, taking into account individual graphs of higher harmonics, has not been carried out until today.

Author(s):  
Mykhailo Syvenko ◽  
Oleksandr Miroshnyk

A detailed substantiation of the use of electric energy storage devices in the presence of generators on renewable energy sources in the power supply system is given. The dependence of the storage parameters on the composition and priority of generation in the system is investigated. The solution of the problem of determining the parameters of electricity storage devices by means of purposeful simulation of generation parameters is considered. The results of the choice of power and capacity of the energy storage using technical and economic indicators are shown. Optimal parameters of electric energy storage devices as one of the most important means of ensuring the activity of isolated power supply systems together with selection of generating devices are determined. The results of calculations of capacity of renewable energy sources in isolated power supply systems in combination with classical energy sources are given. The necessity of using the principle of activity of the distribution electric network and the possibility of its realization is demonstrated. The optimal storage capacity as a function of the share of renewable generation, the non-integrated energy produced by renewable sources and the total storage capacity are plotted for several isolated systems. The main points of the used model of the power supply system of isolated networks are given. In the studied isolated power supply systems, wind power plants and solar power plants, which have significant unpredictability of generation, are used as generation based on renewable energy sources. The problem of undersupply of electricity to the grid by stepwise increase of generation is analysed. The results of the multi-step selection of power and energy consumption of electricity storage are determined by technical criteria.


2019 ◽  
pp. 36-41
Author(s):  
Kachan Yu ◽  
Kuznetsov V

Purpose. Identify the features of operation of wind farms as an auxiliary supplier of electricity for non-traction consumers of railway networks and analyze the main factors that directly affect the use of wind farms due to the random nature of wind flow and additional factors due to the above conditions in different climates. The research methodology is based on modern methods of computational mathematics, statistics and information analysis using modern computer technology. Findings. The need to use renewable energy sources in the power supply systems of non-traction consumers of railway transport is obvious. Given the constant growth of prices and tariffs for electricity in Ukraine, more and more attention is paid to its savings and the search for the cheapest and most affordable alternative sources. The authors consider issues related to the possibility of using additional generation of electricity in the power supply systems of railway transport through the use of wind turbines, including for non-traction consumers. The analysis of wind flow features in some regions of Ukraine was carried out, and the measurement of wind speed in Zaporizhia and Dnipropetrovsk regions was obtained with the help of a compact wind speed sensor manufactured by Micro-Step-MIS LLC (Russia). The obtained values of wind speed were recorded and stored digitally. The received information of the above device was processed. The authors conclude that in the case of using wind turbines as an additional power source in the networks of non-traction consumers of railway power supply systems it is economically advantageous to connect them directly to these networks and fully use all electricity produced by them, reducing its consumption from this power supply system. The originality is that the use of renewable energy sources in the power supply systems of non-traction consumers of railway transport, in particular wind turbines, is proposed. Practical implications. Introduction of wind power plants as an auxiliary supplier of electricity for non-traction consumers of railway power grids in order to minimize electricity costs. Keywords: renewable energy sources, quality of electric energy, wind power plant, power supply networks of railway transport, non-traction consumers of railway electric networks, electricity production, wind speed.


2019 ◽  
pp. 54-60
Author(s):  
Kachan Yuriy ◽  
Kuznetsov Vitaliy

Purpose. Describe the tools used by the authors for experimental research on the possibilities of using renewable energy sources in the power supply systems of non-traction consumers of railway transport. The methodology of research is based on modern methods of computational mathematics, statistics and information analysis using modern computer technology. Findings. To date, there is no comprehensive approach and specific reasonable measures for the introduction of re-newable energy sources in the energy supply of non-traction consumers. The article presents examples of the introduction of renewable energy sources in the power supply systems of railways abroad. It is noted that when using different renewable energy sources in the power supply systems of non-traction consumers, it is necessary to have a volume of statistical information to determine their technical and economic indicators. The classification of wind power plants with a horizontal axis is given. The schematic diagram and general view of the developed experimental wind power plant are given. The schematic diagram and general view of the developed experimental photovoltaic plant are given. The equipment used for research of wind flow and intensity of solar radiation in places of possible location of wind power or photovoltaic installations is considered. The presented experimental wind power and photovoltaic plants, which serve for a comprehensive study of the possibilities of using wind and solar sources in the power supply systems of non-traction consumers, are generalized and allow to clarify the necessary data for decision making. The originality is the introduction of renewable energy sources in the power supply system of non-traction consumers of railway transport. Practical implications. The use of additional renewable energy sources to supply non-traction consumers minimizes electricity consumption. Keywords: renewable energy sources, quality of electric energy, wind power plant, photovoltaic plant, power supply networks of railway transport, traction and non-traction consumers, electricity production


Author(s):  
Yu.A. Papaika ◽  
O.G. Lysenko ◽  
A.V. Bublikov ◽  
I.G. Olishevskiy

Purpose. To substantiate the expediency of applying distribution laws to model the reliability of power supply systems with powerful nonlinear loads. Methodology. Application of exponential and normal distribution laws, and Weibull's law. Findings. In a comprehensive assessment of the problem of electromagnetic compatibility and the development of multicriteria parameters of energy efficiency of power supply systems of industrial enterprises, it is most appropriate to use the reliability of the elements that are mathematically described by the Weibull distribution. At the same time, the results of modeling of typical electrical modes and variations of substitution schemes of enterprises showed the sensitivity of reliability indicators to changes in power system capacity. Originality.  New theoretical foundations for research in modern power supply systems with increasing nonlinear load capacity have developed the scientific basis for analysis and synthesis of energy processes in multiphase electrical systems and propose methods of correction taking into account the complex action of sources of electromagnetic interference. And also to offer methods of estimation of their influence on reliability and efficiency of work of the basic electrotechnological equipment. Practical value.  The possibility of applying the obtained results to assess the reliability of power supply systems with powerful nonlinear loads is substantiated. The necessary accuracy and reliability of the decision at the levels of random events, quantities and processes is provided. The mathematical apparatus for the analysis of the main indicators of reliability in the presence of non-sinusoidal voltage is given. Conclusions are made on the adequacy of the calculation results at different stages of electricity distribution. It is shown that the simultaneous optimization of reliability and voltage quality are components of a complex scientific problem of ensuring energy efficiency of electrical networks in the implementation of decentralized models of the energy system.


Sign in / Sign up

Export Citation Format

Share Document