scholarly journals EFFECTS OF CORIOLIS FORCE ON CURRENT AND SUSPENDED SEDIMENT TRANSPORT IN THE COASTAL ZONE OF RED RIVER DELTA

Author(s):  
Vu Duy Vinh ◽  
Sylvain Ouillon
Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2547
Author(s):  
Nguyen Ngoc Tien ◽  
Dinh Van Uu ◽  
Do Huy Cuong ◽  
Le Dinh Mau ◽  
Nguyen Xuan Tung ◽  
...  

Observation of the Hau River distributary of the Mekong River delta in Vietnam, conducted in dry and flood season (2009, 2014, and 2015), is utilized to investigate the mechanism of formation, distribution of estuarine turbidity maxima (ETM), and links with sediment transport in the system. Additionally, 3D (three-dimensional) numerical models are applied to simulate the seasonal tidal variation (flood and dry seasons) of the water and suspended sediment transport processes of the Mekong River Delta. The 3D model, with a combination of hydrodynamic-wave and suspended sediment transport, was set up and validated with measured data in the study area. The mechanism that measures ETM is the process of suspended sediment from the river when it interacts with seawater and speeds up the flocculation, combined with the asymmetry of the tidal current, which will create the region with ETM by moving in/out with the tidal current’s ups and downs. As there is surface flow velocity towards the sea, the bottom baroclinic flow has a decisive role in deposition and erosion, and it causes the suspended sediment concentration (SSC) to be maximized. During the flood season, the salt wedge near the river’s mouth, at the peak of the tide, pushes towards the sea’s direction when there are ebbing tides, with a scope of about 20 km. In the dry season, there is estuary disturbance as well; the salt wedge forms, but is relatively weak or does not exist, depending on the time of the tide. The maximum turbidity zone in the flood season moves the subaqueous delta with a scope of about 20 km and SSC of about 0.1 to 0.6 g L−1, whereas in the dry season, the seawater has high salinity, and seaward SSC penetrates the estuaries to cause a disturbance and flocculation. The penetration scope is up to 50 km and creates a water mass that has high SSC, from 0.2 to 0.7 g L−1, to run in/off by the tidal current’s ups and downs for several kilometers in the tidal phase.


CATENA ◽  
2021 ◽  
Vol 197 ◽  
pp. 104958 ◽  
Author(s):  
Xi Wei ◽  
Sabine Sauvage ◽  
Sylvain Ouillon ◽  
Thi Phuong Quynh Le ◽  
Didier Orange ◽  
...  

Heliyon ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. e05872
Author(s):  
Hoang Phan Hải Yen ◽  
Tran Thị Thanh Nhan ◽  
Tran Nghi ◽  
Ngo Quang Toan ◽  
Hoang Anh Khien ◽  
...  

2013 ◽  
pp. 79-94
Author(s):  
Ngoc Luu Bich

Climate change (CC) and its impacts on the socio-economy and the development of communities has become an issue causing very special concern. The rise in global temperatures, in sea levels, extreme weather phenomena, and salinization have occurred more and more and have directly influenced the livelihoods of rural households in the Red River Delta – one of the two regions projected to suffer strongly from climate change in Vietnam. For farming households in this region, the major and traditional livelihoods are based on main production materials as agricultural land, or aquacultural water surface Changes in the land use of rural households in the Red River Delta during recent times was influenced strongly by the Renovation policy in agriculture as well as the process of industrialization and modernization in the country. Climate change over the past 5 years (2005-2011) has started influencing household land use with the concrete manifestations being the reduction of the area cultivated and the changing of the purpose of land use.


2021 ◽  
Vol 411 ◽  
pp. 125128
Author(s):  
Harald Neidhardt ◽  
Sebastian Rudischer ◽  
Elisabeth Eiche ◽  
Magnus Schneider ◽  
Emiliano Stopelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document