scholarly journals Metamodeling of the Energy Consumption of Buildings with Daylight Harvesting – Application of Artificial Neural Networks Sensitive to Orientation

2021 ◽  
Vol 8 (2) ◽  
pp. 255-269
Author(s):  
Raphaela Walger da Fonseca ◽  
◽  
Fernando Oscar Ruttkay Pereira ◽  

Daylight harvesting is a well-known strategy to address building energy efficiency. However, few simplified tools can evaluate its dual impact on lighting and air conditioning energy consumption. Artificial neural networks (ANNs) have been used as metamodels to predict energy consumption with high precision, few input parameters and instant response. However, this approach still lacks the potential to estimate consumption when there is daylight harvesting, at the ambient level, where the effect of orientation can be noted. This study investigates this potential, in order to evaluate the applicability of ANNs as a tool to aid the architectonic design. The ANNs were approached as metamodels trained based on EnergyPlus thermo-energetic simulations. The network configuration focused on determining its simplest feasible form. The input parameters adopted as the main variables of the building envelope were as follows: orientation, window-to-wall ratio and visible transmission. The effects of the encoding of orientation as a network input parameter, the number of examples of each variable for network training and changing the parameters used for the training were evaluated. The networks predicted the individualized consumption according to the end use with errors below 5%, indicating their potential to be applied as a simplified tool to support the design process, considering the elementary variables of the building envelope. The discussion of results focused on guidelines and challenges to achieve this purpose when contemplating the broadening of the metamodel scope.

2002 ◽  
pp. 220-235 ◽  
Author(s):  
Paul Lajbcygier

The pricing of options on futures is compared using conventional models and artificial neural networks. This work demonstrates superior pricing accuracy using the artificial neural networks in an important subset of the input parameter set.


Author(s):  
Sankhanil Goswami

Abstract Modern buildings account for a significant proportion of global energy consumption worldwide. Therefore, accurate energy use forecast is necessary for energy management and conservation. With the advent of smart sensors, a large amount of accurate energy data is available. Also, with the advancements in data analytics and machine learning, there have been numerous studies on developing data-driven prediction models based on Artificial Neural Networks (ANNs). In this work a type of ANN called Large Short-Term Memory (LSTM) is used to predict the energy use and cooling load of an existing building. A university administrative building was chosen for its typical commercial environment. The network was trained with one year of data and was used to predict the energy consumption and cooling load of the following year. The mean absolute testing error for the energy consumption and the cooling load were 0.105 and 0.05. The percentage mean accuracy was found to be 92.8% and 96.1%. The process was applied to several other buildings in the university and similar results were obtained. This indicates the model can successfully predict the energy consumption and cooling load for the buildings studied. The further improvement and application of this technique for optimizing building performance are also explored.


2013 ◽  
Vol 11 (12) ◽  
pp. 2333-2340 ◽  
Author(s):  
Feng-Kuang Chuang ◽  
Chih-Young Hung ◽  
Chi-Ya Chang ◽  
Kuo-Cheng Kuo

Sign in / Sign up

Export Citation Format

Share Document