06/00218 Selection of input parameters to model direct solar irradiance by using artificial neural networks

2006 ◽  
Vol 47 (1) ◽  
pp. 31
2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
A. Fotovati ◽  
J. Kadkhodapour ◽  
S. Schmauder

Nanoindentation test results on different grain sizes of dual phase (DP) steels are used to train artificial neural networks (ANNs). With selection of ferrite and martensite grain size, martensite volume fraction (MVF), and indentation force as input and microhardness, ferrite, and martensite nanohardness as outputs, six different ANNs are trained according to normalized datasets to predict hardness and their tolerances. A graphical user interface (GUI) is developed for a better investigation of the trained ANN prediction. The response of the ANN is analyzed in five case studies. In each case the variation of two input parameters on the output is analyzed when the other input parameters are kept constant. Reliable and reasonable results of ANN predictions are achieved in each case.


Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 45 ◽  
Author(s):  
Waleed I. Hameed ◽  
Baha A. Sawadi ◽  
Safa J. Al-Kamil ◽  
Mohammed S. Al-Radhi ◽  
Yasir I. A. Al-Yasir ◽  
...  

Prediction of solar irradiance plays an essential role in many energy systems. The objective of this paper is to present a low-cost solar irradiance meter based on artificial neural networks (ANN). A photovoltaic (PV) mathematical model of 50 watts and 36 cells was used to extract the short-circuit current and the open-circuit voltage of the PV module. The obtained data was used to train the ANN to predict solar irradiance for horizontal surfaces. The strategy was to measure the open-circuit voltage and the short-circuit current of the PV module and then feed it to the ANN as inputs to get the irradiance. The experimental and simulation results showed that the proposed method could be utilized to achieve the value of solar irradiance with acceptable approximation. As a result, this method presents a low-cost instrument that can be used instead of an expensive pyranometer.


2008 ◽  
Vol 47 (6) ◽  
pp. 1757-1769 ◽  
Author(s):  
D. B. Shank ◽  
G. Hoogenboom ◽  
R. W. McClendon

Abstract Dewpoint temperature, the temperature at which water vapor in the air will condense into liquid, can be useful in estimating frost, fog, snow, dew, evapotranspiration, and other meteorological variables. The goal of this study was to use artificial neural networks (ANNs) to predict dewpoint temperature from 1 to 12 h ahead using prior weather data as inputs. This study explores using three-layer backpropagation ANNs and weather data combined for three years from 20 locations in Georgia, United States, to develop general models for dewpoint temperature prediction anywhere within Georgia. Specific objectives included the selection of the important weather-related inputs, the setting of ANN parameters, and the selection of the duration of prior input data. An iterative search found that, in addition to dewpoint temperature, important weather-related ANN inputs included relative humidity, solar radiation, air temperature, wind speed, and vapor pressure. Experiments also showed that the best models included 60 nodes in the ANN hidden layer, a ±0.15 initial range for the ANN weights, a 0.35 ANN learning rate, and a duration of prior weather-related data used as inputs ranging from 6 to 30 h based on the lead time. The evaluation of the final models with weather data from 20 separate locations and for a different year showed that the 1-, 4-, 8-, and 12-h predictions had mean absolute errors (MAEs) of 0.550°, 1.234°, 1.799°, and 2.280°C, respectively. These final models predicted dewpoint temperature adequately using previously unseen weather data, including difficult freeze and heat stress extremes. These predictions are useful for decisions in agriculture because dewpoint temperature along with air temperature affects the intensity of freezes and heat waves, which can damage crops, equipment, and structures and can cause injury or death to animals and humans.


Sign in / Sign up

Export Citation Format

Share Document