Good Science, Bad Science?

2016 ◽  
Vol 27 (2) ◽  
pp. 88-88
Author(s):  
Paul Leonard
Keyword(s):  
2012 ◽  
Author(s):  
Tom Giberson ◽  
Suzanne Miklos
Keyword(s):  

2012 ◽  
Vol 5 (2) ◽  
pp. 153-174
Author(s):  
Christina D. Weber ◽  
Angie Hodge

Using dialogues with our informants, as well as with each other, we explore how the men and women in our research make it through their mathematics coursework and, in turn, pursue their intended majors. Our research focuses on how students navigate what we call the gendered math path and how that path conforms to and diverges from traditional gender norms. Common themes of women's lower than men's self-perception of their ability to do mathematics, along with the divergent processes of doing gender that emerged in men's and women's discussions of their application of mathematics, reminded us of the continued struggles that women have to succeed in male-dominated academic disciplines. Although self-perception helps us understand why there are fewer women in STEM fields, it is important to understand how different forms of application of ideas might add to the diversity of what it means to do good science.


2018 ◽  
Author(s):  
Camilla Kao ◽  
Che-I Kao ◽  
Russell Furr

In science, safety can seem unfashionable. Satisfying safety requirements can slow the pace of research, make it cumbersome, or cost significant amounts of money. The logic of rules can seem unclear. Compliance can feel like a negative incentive. So besides the obvious benefit that safety keeps one safe, why do some scientists preach "safe science is good science"? Understanding the principles that underlie this maxim might help to create a strong positive incentive to incorporate safety into the pursuit of groundbreaking science.<div><br></div><div>This essay explains how safety can enhance the quality of an experiment and promote innovation in one's research. Being safe induces a researcher to have <b>greater control</b> over an experiment, which reduces the <b>uncertainty</b> that characterizes the experiment. Less uncertainty increases both <b>safety</b> and the <b>quality</b> of the experiment, the latter including <b>statistical quality</b> (reproducibility, sensitivity, etc.) and <b>countless other properties</b> (yield, purity, cost, etc.). Like prototyping in design thinking and working under the constraint of creative limitation in the arts, <b>considering safety issues</b> is a hands-on activity that involves <b>decision-making</b>. Making decisions leads to new ideas, which spawns <b>innovation</b>.</div>


1987 ◽  
Vol 13 (3) ◽  
pp. 201-215
Author(s):  
D. M. Watts ◽  
Diana Bentley

2021 ◽  
Vol 15 (4) ◽  
pp. 327-347
Author(s):  
Jean Francesco A.L. Gomes

Abstract The aim of this article is to investigate how Abraham Kuyper and some late neo-Calvinists have addressed the doctrine of creation in light of the challenges posed by evolutionary scientific theory. I argue that most neo-Calvinists today, particularly scholars from the Vrije Universiteit Amsterdam (VU), continue Kuyper’s legacy by holding the core principles of a creationist worldview. Yet, they have taken a new direction by explaining the natural history of the earth in evolutionary terms. In my analysis, Kuyper’s heirs at the VU today offer judicious parameters to guide Christians in conversation with evolutionary science, precisely because of their high appreciation of good science and awareness of the nonnegotiable elements that make up the orthodox Christian narrative.


Sign in / Sign up

Export Citation Format

Share Document