scholarly journals LINKING LAND USE CHANGES TO VARIATION IN SURFACE WATER QUALITY: EVIDENCE FROM 36 CATCHMENTS IN IRAN

2019 ◽  
Vol 17 (4) ◽  
Author(s):  
M MAHMOODI
Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 189 ◽  
Author(s):  
Matjaž Glavan ◽  
Sara Bele ◽  
Miha Curk ◽  
Marina Pintar

Intensive agriculture causes nutrient leaching and accelerates erosion processes, which threatens the good quality status of surface waters, as proposed by the European Union (EU) Water Framework Directive. The purpose of this study was to define the impact of two alternative agricultural land-use change scenarios defined in a Municipal Spatial Plan on surface water quality by using the Agricultural Policy/Environmental eXtender (APEX) model. As experimental area, we chose a small Kožbanjšček stream catchment (1464 ha) situated in the Goriška Brda region in Slovenia. The area, due to favorable conditions for vineyards, is facing increasing deforestation. The change of 66.3 ha of forests to vineyards would increase the sediment, nitrate, and phosphorus loads in the stream by 24.8%, 17.1%, and 10.7%, respectively. With the implementation of vegetative buffer strips as a mitigation measure of the current situation, we could reduce the sediment, nitrate, and phosphorus loads by 17.9%, 11.1%, and 3.1%, respectively, while a combination of the two land-use change scenarios would result in a slight increase of the above-mentioned loads, corresponding to 0.61%, 2.1%, and 6.6%, respectively, compared to the baseline situation. The results confirm that, as we can increase pollution levels with deforestation, we can also reduce water pollution by choosing proper types of land management measures.


2013 ◽  
Vol 25 (6) ◽  
pp. 1107-1116 ◽  
Author(s):  
Takashi Tanaka ◽  
Takahiro Sato ◽  
Kazuo Watanabe ◽  
Ying Wang ◽  
Dan Yang ◽  
...  

2009 ◽  
Vol 60 (7) ◽  
pp. 619 ◽  
Author(s):  
Richard W. McDowell

Land use can influence stream sediment composition and water quality, whereas moisture status affects sediment phosphorus (P) bioavailability to algae. Declining upland surface-water quality in South Otago, New Zealand, may reflect land-use changes from sheep- to dairy-farming. I sampled sediment (0–20 cm) from streams draining 12 dairy- and 12 sheep-farmed catchments in spring (wet) and autumn (dry). 31P nuclear magnetic resonance (NMR) spectroscopy and the EDTA-fractionation scheme were used to determine different P forms and infer P bioavailability. Significantly more P was present in the sediment of streams draining dairy- than sheep-farmed catchments. Total P did not differ with the moisture regime; however, changes occurred in the following P fractions: acid-soluble organic P, NaOH-P, CaCO3≈P, Fe(OOH)≈P and residual organic P. Extraction for 31P NMR analysis removed 78–85% of sediment total P and isolated five P classes. More bioavailable P such as orthophosphate (23–40% of P extracted) and diesters (2–6% of P extracted) was present in dry than in wet sediments, and in sediments draining dairy streams than in those from sheep-farmed catchments. This indicates substantial reserves of bioavailable P in sediment from these catchments, especially from dairy-farmed catchments, sustaining in-stream P concentrations for many years even without additional P input from land.


2016 ◽  
Vol 94 ◽  
pp. 516-524 ◽  
Author(s):  
Davi Gasparini Fernandes Cunha ◽  
Lyda Patricia Sabogal-Paz ◽  
Walter Kennedy Dodds

Sign in / Sign up

Export Citation Format

Share Document