Rarefactive electron-scale shock excitations in a degenerate quantum plasma

Author(s):  
M. Hossen ◽  
◽  
A. Mamun ◽  
Keyword(s):  
1979 ◽  
Vol 40 (C7) ◽  
pp. C7-513-C7-514
Author(s):  
N. E. Frankel ◽  
K. C. Hines ◽  
R. D.B. Speirs

2021 ◽  
Vol 76 (4) ◽  
pp. 329-347
Author(s):  
Swarniv Chandra ◽  
Chinmay Das ◽  
Jit Sarkar

Abstract In this paper we have studied the gradual evolution of stationary formations in electron acoustic waves at a finite temperature quantum plasma. We have made use of Quantum hydrodynamics model equations and obtained the KdV-Burgers equation. From here we showed how the amplitude modulated solitons evolve from double layer structures through shock fronts and ultimately converging into solitary structures. We have studied the various parametric influences on such stationary structure and also showed how the gradual variations of these parameter affect the transition from one form to another. The results thus obtained will help in the generation and structure of the structures in their respective domain. Much of the experiments on dense plasma will benefit from the parametric study. Further we have studied amplitude modulation followed by a detailed study on chaos.


2021 ◽  
Author(s):  
V. S. Pawar ◽  
P. P. Nikam ◽  
S. R. Kokare ◽  
S. D. Patil ◽  
M. V. Takale

2020 ◽  
Vol 172 ◽  
pp. 108756
Author(s):  
Zhan-Bin Chen ◽  
Hua-Yang Sun ◽  
Peng-Fei Liu ◽  
Hong-Wei Hu ◽  
Kai Wang

2010 ◽  
Vol 53 (1) ◽  
pp. 51-76 ◽  
Author(s):  
Padma K Shukla ◽  
B Eliasson

2009 ◽  
Vol 76 (1) ◽  
pp. 7-17 ◽  
Author(s):  
BENGT ELIASSON ◽  
PADMA KANT SHUKLA

AbstractWe present a derivation of the dispersion relation for electrostatic oscillations in a zero-temperature quantum plasma, in which degenerate electrons are governed by the Wigner equation, while non-degenerate ions follow the classical fluid equations. The Poisson equation determines the electrostatic wave potential. We consider parameters ranging from semiconductor plasmas to metallic plasmas and electron densities of compressed matter such as in laser compression schemes and dense astrophysical objects. Owing to the wave diffraction caused by overlapping electron wave function because of the Heisenberg uncertainty principle in dense plasmas, we have the possibility of Landau damping of the high-frequency electron plasma oscillations at large enough wavenumbers. The exact dispersion relations for the electron plasma oscillations are solved numerically and compared with the ones obtained by using approximate formulas for the electron susceptibility in the high- and low-frequency cases.


Sign in / Sign up

Export Citation Format

Share Document