Estimated Fall Chinook Salmon Survival to Emergence in Dewatered Redds in a Shallow Side Channel of the Columbia River

2005 ◽  
Vol 25 (3) ◽  
pp. 876-884 ◽  
Author(s):  
Geoffrey A. McMichael ◽  
Cindy L. Rakowski ◽  
Brenda B. James ◽  
Joe A. Lukas
2019 ◽  
Vol 76 (7) ◽  
pp. 1212-1226 ◽  
Author(s):  
Morgan H. Bond ◽  
Tyler G. Nodine ◽  
Tim J. Beechie ◽  
Richard W. Zabel

In the Pacific Northwest, widespread stream channel simplification has led to a loss of habitat area and diversity for rearing salmon. Subsequent efforts throughout the Columbia River basin (CRB) have attempted to restore habitats altered through land development to recover imperiled salmon populations. However, there is scant evidence for demographic change in salmon populations following restoration. We used a process-based approach to estimate the potential benefit of floodplain reconnection throughout the CRB to Chinook salmon (Oncorhynchus tshawytscha) parr. Using satellite imagery, we measured stream habitats at 2093 CRB stream reaches to construct random forest models of habitat based on geomorphic and regional characteristics. Connected floodplain width was the most important factor for determining side channel presence. We estimated a current CRB-wide decrease in side channel habitat area of 26% from historical conditions. Reconnection of historical floodplains currently used for agriculture could increase side channel habitat by 25% and spring Chinook salmon parr total rearing capacity by 9% over current estimates. Individual watersheds vary greatly in habitat factors that limit salmon recovery, and large-scale estimates of restoration potential like these are needed to make decisions about long-term restoration goals among imperiled populations.


2006 ◽  
Vol 63 (8) ◽  
pp. 1752-1762 ◽  
Author(s):  
Matthew L Keefer ◽  
Christopher C Caudill ◽  
Christopher A Peery ◽  
Theodore C Bjornn

Upstream-migrating adult salmon must make a series of correct navigation and route-selection decisions to successfully locate natal streams. In this field study, we examined factors influencing migration route selections early in the migration of 4361 radio-tagged adult Chinook salmon (Oncorhynchus tshawytscha) as they moved upstream past dams in the large (~1 km wide) Columbia River. Substantial behavioral differences were observed among 11 conspecific populations, despite largely concurrent migrations. At dams, Chinook salmon generally preferred ladder passage routes adjacent to the shoreline where their natal tributaries entered, and the degree of preference increased as salmon proximity to natal tributaries increased. Columbia River discharge also influenced route choices, explaining some route selection variability. We suggest that salmon detect lateral gradients in orientation cues across the Columbia River channel that are entrained within tributary plumes and that these gradients in cues can persist downstream for tens to hundreds of kilometres. Detection of tributary plumes in large river systems, using olfactory or other navigation cues, may facilitate efficient route selection and optimize energy conservation by long-distance migrants.


2000 ◽  
Vol 57 (3) ◽  
pp. 616-627 ◽  
Author(s):  
Louis W Botsford ◽  
Charles M Paulsen

We assessed covariability among a number of spawning populations of spring-summer run chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin by computing correlations among several different types of spawner and recruit data. We accounted for intraseries correlation explicitly in judging the significance of correlations. To reduce the errors involved in computing effective degrees of freedom, we computed a generic effective degrees of freedom for each data type. In spite of the fact that several of these stocks have declined, covariability among locations using several different combinations of spawner and recruitment data indicated no basinwide covariability. There was, however, significant covariability among index populations within the three main subbasins: the Snake River, the mid-Columbia River, and the John Day River. This covariability was much stronger and more consistent in data types reflecting survival (e.g., the natural logarithm of recruits per spawner) than in data reflecting abundance (e.g., spawning escapement). We also tested a measure of survival that did not require knowing the age structure of spawners, the ratio of spawners in one year to spawners 4 years earlier. It displayed a similar spatial pattern.


Sign in / Sign up

Export Citation Format

Share Document