scholarly journals OPEN PACKING NUMBER FOR SOME CLASSES OF PERFECT GRAPHS

2020 ◽  
Vol 6 (2) ◽  
pp. 38
Author(s):  
K. Raja Chandrasekar ◽  
S. Saravanakumar

Let \(G\) be a graph with the vertex set \(V(G)\).  A subset \(S\) of \(V(G)\) is an open packing set of \(G\) if every pair of vertices in \(S\) has no common neighbor in \(G.\)  The maximum cardinality of an open packing set of \(G\) is the open packing number of \(G\) and it is denoted by \(\rho^o(G)\).  In this paper, the exact values of the open packing numbers for some classes of perfect graphs, such as split graphs, \(\{P_4, C_4\}\)-free graphs, the complement of a bipartite graph, the trestled graph of a perfect graph are obtained.

2019 ◽  
Vol 11 (05) ◽  
pp. 1950051
Author(s):  
S. Saravanakumar ◽  
A. Anitha ◽  
I. Sahul Hamid

In a graph [Formula: see text], a set [Formula: see text] is said to be an open packing set if no two vertices of [Formula: see text] have a common neighbor in [Formula: see text] The maximum cardinality of an open packing set is called the open packing number and is denoted by [Formula: see text]. The open packing bondage number of a graph [Formula: see text], denoted by [Formula: see text], is the cardinality of the smallest set of edges [Formula: see text] such that [Formula: see text]. In this paper, we initiate a study on this parameter.


2016 ◽  
Vol 08 (01) ◽  
pp. 1650016 ◽  
Author(s):  
I. Sahul Hamid ◽  
S. Saravanakumar

In a graph [Formula: see text], a nonempty set [Formula: see text] is said to be an open packing set if no two vertices of [Formula: see text] have a common neighbor in [Formula: see text] The maximum cardinality of an open packing set is called the open packing number and is denoted by [Formula: see text]. In this paper, we examine the effect of [Formula: see text] when [Formula: see text] is modified by deleting an edge.


A non-empty set of a graph G is an open packing set of G if no two vertices of S have a common neighbor in G. The maximum cardinality of an open packing set is the open packing number of G and is denoted by . An open packing set of cardinality is a -set of G. In this paper, the classes of trees and unicyclic graphs for which the value of is either 2 or 3 are characterized. Moreover, the exact values of the open packing number for some special classes of graphs have been found.


2016 ◽  
Vol 10 (02) ◽  
pp. 1750033
Author(s):  
I. Sahul Hamid ◽  
S. Saravanakumar

In a graph [Formula: see text], a non-empty set [Formula: see text] is said to be an open packing set if no two vertices of [Formula: see text] have a common neighbor in [Formula: see text] Let [Formula: see text] and let [Formula: see text] denote the maximum cardinality of an open packing set in [Formula: see text] which contains [Formula: see text]. Then [Formula: see text] is called the open packing saturation number of [Formula: see text]. In this paper, we initiate a study on this parameter.


Author(s):  
S. Saravanakumar ◽  
C. Gayathri

A set [Formula: see text] of a graph [Formula: see text] is an [Formula: see text] [Formula: see text] [Formula: see text] of [Formula: see text] if no two vertices of [Formula: see text] have a common neighbor in [Formula: see text]. An open packing set [Formula: see text] is called an outer-connected open packing set (ocop-set) if either [Formula: see text] or [Formula: see text] is connected. The minimum and maximum cardinalities of an ocop-set are called the lower outer-connected open packing number and the outer-connected open packing number, respectively, and are denoted by [Formula: see text] and [Formula: see text], respectively. In this paper, we initiate a study on these parameters.


2002 ◽  
Vol 03 (03n04) ◽  
pp. 273-289 ◽  
Author(s):  
CHANG-HSIUNG TSAI ◽  
JIMMY J. M. TAN ◽  
YEN-CHU CHUANG ◽  
LIH-HSING HSU

We present some results concerning hamiltonian properties of recursive circulant graphs in the presence of faulty vertices and/or edges. The recursive circulant graph G(N, d) with d ≥ 2 has vertex set V(G) = {0, 1, …, N - 1} and the edge set E(G) = {(v, w)| ∃ i, 0 ≤ i ≤ ⌈ log d N⌉ - 1, such that v = w + di (mod N)}. When N = cdk where d ≥ 2 and 2 ≤ c ≤ d, G(cdk, d) is regular, node symmetric and can be recursively constructed. G(cdk, d) is a bipartite graph if and only if c is even and d is odd. Let F, the faulty set, be a subset of V(G(cdk, d)) ∪ E(G(cdk, d)). In this paper, we prove that G(cdk, d) - F remains hamiltonian if |F| ≤ deg (G(cdk, d)) - 2 and G(cdk, d) is not bipartite. Moreover, if |F| ≤ deg (G(cdk, d)) - 3 and G(cdk, d) is not a bipartite graph, we prove a more stronger result that for any two vertices u and v in V(G(cdk, d)) - F, there exists a hamiltonian path of G(cdk, d) - F joining u and v.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950068
Author(s):  
Nopparat Pleanmani

A graph pebbling is a network optimization model for the transmission of consumable resources. A pebbling move on a connected graph [Formula: see text] is the process of removing two pebbles from a vertex and placing one of them on an adjacent vertex after configuration of a fixed number of pebbles on the vertex set of [Formula: see text]. The pebbling number of [Formula: see text], denoted by [Formula: see text], is defined to be the least number of pebbles to guarantee that for any configuration of pebbles on [Formula: see text] and arbitrary vertex [Formula: see text], there is a sequence of pebbling movement that places at least one pebble on [Formula: see text]. For connected graphs [Formula: see text] and [Formula: see text], Graham’s conjecture asserted that [Formula: see text]. In this paper, we show that such conjecture holds when [Formula: see text] is a complete bipartite graph with sufficiently large order in terms of [Formula: see text] and the order of [Formula: see text].


2019 ◽  
Vol 12 (02) ◽  
pp. 1950024
Author(s):  
M. J. Nikmehr ◽  
S. M. Hosseini

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the set of ideals of [Formula: see text] with nonzero annihilator. The annihilator-ideal graph of [Formula: see text], denoted by [Formula: see text], is a simple graph with the vertex set [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper, we present some results on the bipartite, complete bipartite, outer planar and unicyclic of the annihilator-ideal graphs of a commutative ring. Among other results, bipartite annihilator-ideal graphs of rings are characterized. Also, we investigate planarity of the annihilator-ideal graph and classify rings whose annihilator-ideal graph is planar.


2011 ◽  
Vol 03 (02) ◽  
pp. 245-252 ◽  
Author(s):  
VADIM E. LEVIT ◽  
EUGEN MANDRESCU

A maximum stable set in a graph G is a stable set of maximum cardinality. S is a local maximum stable set of G, and we write S ∈ Ψ(G), if S is a maximum stable set of the subgraph induced by S ∪ N(S), where N(S) is the neighborhood of S. Nemhauser and Trotter Jr. [Vertex packings: structural properties and algorithms, Math. Program.8 (1975) 232–248], proved that any S ∈ Ψ(G) is a subset of a maximum stable set of G. In [Levit and Mandrescu, A new greedoid: the family of local maximum stable sets of a forest, Discrete Appl. Math.124 (2002) 91–101] we have shown that the family Ψ(T) of a forest T forms a greedoid on its vertex set. The cases where G is bipartite, triangle-free, well-covered, while Ψ(G) is a greedoid, were analyzed in [Levit and Mandrescu, Local maximum stable sets in bipartite graphs with uniquely restricted maximum matchings, Discrete Appl. Math.132 (2004) 163–174], [Levit and Mandrescu, Triangle-free graphs with uniquely restricted maximum matchings and their corresponding greedoids, Discrete Appl. Math.155 (2007) 2414–2425], [Levit and Mandrescu, Well-covered graphs and greedoids, Proc. 14th Computing: The Australasian Theory Symp. (CATS2008), Wollongong, NSW, Conferences in Research and Practice in Information Technology, Vol. 77 (2008) 89–94], respectively. In this paper we demonstrate that if G is a very well-covered graph of girth ≥4, then the family Ψ(G) is a greedoid if and only if G has a unique perfect matching.


1993 ◽  
Vol 03 (03) ◽  
pp. 233-241
Author(s):  
A. RAMAN ◽  
C. PANDU RANGAN

A set of vertices D is a dominating set of a graph G=(V, E) if every vertex in V−D is adjacent to at least one vertex in D. The domatic partition of G is the partition of the vertex set V into a maximum number of dominating sets. In this paper, we present efficient parallel algorithms for finding the domatic partition of Interval graphs, Block graphs and K-trees.


Sign in / Sign up

Export Citation Format

Share Document