math program
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 17)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
René Brandenberg ◽  
Paul Stursberg

AbstractIn this paper, we present a new perspective on cut generation in the context of Benders decomposition. The approach, which is based on the relation between the alternative polyhedron and the reverse polar set, helps us to improve established cut selection procedures for Benders cuts, like the one suggested by Fischetti et al. (Math Program Ser B 124(1–2):175–182, 2010). Our modified version of that criterion produces cuts which are always supporting and, unless in rare special cases, facet-defining. We discuss our approach in relation to the state of the art in cut generation for Benders decomposition. In particular, we refer to Pareto-optimality and facet-defining cuts and observe that each of these criteria can be matched to a particular subset of parametrizations for our cut generation framework. As a consequence, our framework covers the method to generate facet-defining cuts proposed by Conforti and Wolsey (Math Program Ser A 178:1–20, 2018) as a special case. We conclude the paper with a computational evaluation of the proposed cut selection method. For this, we use different instances of a capacity expansion problem for the european power system.


Author(s):  
Sarah Morell ◽  
Martin Skutella

AbstractIn a digraph with a source and several destination nodes with associated demands, an unsplittable flow routes each demand along a single path from the common source to its destination. Given some flow x that is not necessarily unsplittable but satisfies all demands, it is a natural question to ask for an unsplittable flow y that does not deviate from x by too much, i.e., $$y_a\approx x_a$$ y a ≈ x a for all arcs a. Twenty years ago, in a landmark paper, Dinitz et al. (Combinatorica 19:17–41, 1999) proved that there exists an unsplittable flow y such that $$y_a\le x_a+d_{\max }$$ y a ≤ x a + d max for all arcs a, where $$d_{\max }$$ d max denotes the maximum demand value. Our first contribution is a considerably simpler one-page proof for this classical result, based upon an entirely new approach. Secondly, using a subtle variant of this approach, we obtain a new result: There is an unsplittable flow y such that $$y_a\ge x_a-d_{\max }$$ y a ≥ x a - d max for all arcs a. Finally, building upon an iterative rounding technique previously introduced by Kolliopoulos and Stein (SIAM J Comput 31:919–946, 2002) and Skutella (Math Program 91:493–514, 2002), we prove existence of an unsplittable flow that simultaneously satisfies the upper and lower bounds for the special case when demands are integer multiples of each other. For arbitrary demand values, we prove the weaker simultaneous bounds $$x_a/2-d_{\max }\le y_a\le 2x_a+d_{\max }$$ x a / 2 - d max ≤ y a ≤ 2 x a + d max for all arcs a.


2021 ◽  
Vol 191 (1) ◽  
pp. 1-30
Author(s):  
Yurii Nesterov

AbstractIn this paper, we present new second-order methods with convergence rate $$O\left( k^{-4}\right) $$ O k - 4 , where k is the iteration counter. This is faster than the existing lower bound for this type of schemes (Agarwal and Hazan in Proceedings of the 31st conference on learning theory, PMLR, pp. 774–792, 2018; Arjevani and Shiff in Math Program 178(1–2):327–360, 2019), which is $$O\left( k^{-7/2} \right) $$ O k - 7 / 2 . Our progress can be explained by a finer specification of the problem class. The main idea of this approach consists in implementation of the third-order scheme from Nesterov (Math Program 186:157–183, 2021) using the second-order oracle. At each iteration of our method, we solve a nontrivial auxiliary problem by a linearly convergent scheme based on the relative non-degeneracy condition (Bauschke et al. in Math Oper Res 42:330–348, 2016; Lu et al. in SIOPT 28(1):333–354, 2018). During this process, the Hessian of the objective function is computed once, and the gradient is computed $$O\left( \ln {1 \over \epsilon }\right) $$ O ln 1 ϵ times, where $$\epsilon $$ ϵ is the desired accuracy of the solution for our problem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shui-Lian Xie ◽  
Zhe Sun ◽  
Hong-Ru Xu

AbstractIn this paper, we consider the numerical method for solving finite-dimensional quasi-variational inequalities with both equality and inequality constraints. Firstly, we present a semismooth equation reformulation to the KKT system of a finite-dimensional quasi-variational inequality. Then we propose a semismooth Newton method to solve the equations and establish its global convergence. Finally, we report some numerical results to show the efficiency of the proposed method. Our method can obtain the solution to some problems that cannot be solved by the method proposed in (Facchinei et al. in Comput. Optim. Appl. 62:85–109, 2015). Besides, our method outperforms than the interior point method proposed in (Facchinei et al. in Math. Program. 144:369–412, 2014).


2021 ◽  
Vol 68 (06) ◽  
pp. 1
Author(s):  
Daniel Glasscock ◽  
Claire Merriman ◽  
Donald Robertson ◽  
Clifford Smyth
Keyword(s):  

2021 ◽  
Vol 27 ◽  
pp. 100222
Author(s):  
Lauren Zito ◽  
Jennifer L. Cross ◽  
Bambi Brewer ◽  
Samantha Speer ◽  
Michael Tasota ◽  
...  

2021 ◽  
Vol 26 (2) ◽  
Author(s):  
Samaher Marez

  The aim of this paper, a reliable iterative method is presented for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method.  Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibit that this technique has compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.


2020 ◽  
Author(s):  
Ivan Lopez Hurtado ◽  
Charles Knight ◽  
Raul Peralta ◽  
Jorge Crichigno

2020 ◽  
pp. 7-23
Author(s):  
Tamara Sarangovna Khazykova

The article highlights the relevance of the problem of improving the elementary school children’s mathematical education. The analysis of psychological and pedagogical literature on the research problem is performed. The author defines the psychological and pedagogical foundations for elementary school children’s quantitative skills development, and also notes the main forms and types of extracurricular activities in mathematics. The study presents after-school math program, aimed at elementary school children’s quantitative skills development.


2020 ◽  
Vol 8 (3-4) ◽  
pp. 309-325 ◽  
Author(s):  
Ernst Althaus ◽  
Felix Rauterberg ◽  
Sarah Ziegler

Abstract In the classical Euclidean Steiner minimum tree (SMT) problem, we are given a set of points in the Euclidean plane and we are supposed to find the minimum length tree that connects all these points, allowing the addition of arbitrary additional points. We investigate the variant of the problem where the input is a set of line segments. We allow these segments to have length 0, i.e., they are points and hence we generalize the classical problem. Furthermore, they are allowed to intersect such that we can model polygonal input. As in the GeoSteiner approach of Juhl et al. (Math Program Comput 10(2):487–532, 2018) for the classical case, we use a two-phase approach where we construct a superset of so-called full components of an SMT in the first phase. We prove a structural theorem for these full components, which allows us to use almost the same GeoSteiner algorithm as in the classical SMT problem. The second phase, the selection of a minimal cost subset of constructed full components, is exactly the same as in GeoSteiner approach. Finally, we report some experimental results that show that our approach is more efficient than the approximate solution that is obtained by sampling the segments.


Sign in / Sign up

Export Citation Format

Share Document