scholarly journals Minimizing Uplink Cellular Outage Probability in Interference Limited Rayleigh and Nakagami Wireless Fading Channels

Author(s):  
Mohammad Hayajneh

We propose a game theoretic non-cooperative algorithm to optimize theinduced outage probability in an uplink cellular interference limited wireless Rayleighand Nakagami fading channels. We achieve this target by maximizing the certaintyequivalent margin (CEM). We derive a closed-form formula of the outage probabilityin Nakagami flat-fading channels, then we show that minimizing the induced outagefading probability for both Rayleigh and Nakagami channels is equivalent to maxi-mizing CEM. We present a non-cooperative power control algorithm using the gametheory framework. Through this non-cooperative game, we argue that the best de-cision in such an environment is for all users to transmit at the minimum power intheir corresponding strategy profiles. This finding considerably simplifies the imple-mentation of the proposed game.

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Lingwei Xu ◽  
Hao Zhang ◽  
T. Aaron Gulliver

The lower bound on outage probability (OP) of mobile-to-mobile (M2M) cooperative networks overN-Nakagami fading channels is derived for SNR-based hybrid decode-amplify-forward (HDAF) relaying. The OP performance under different conditions is evaluated through numerical simulation to verify the accuracy of the analysis. These results show that the fading coefficient, number of cascaded components, relative geometric gain, and power-allocation are important parameters that influence this performance.


Sign in / Sign up

Export Citation Format

Share Document