The pro- and anti-inflammatory potential of IL-12: the dual role of Th1 cells

2007 ◽  
Vol 3 (5) ◽  
pp. 709-719
Author(s):  
Hyun-Dong Chang ◽  
Andreas Radbruch
2021 ◽  
Vol 11 ◽  
Author(s):  
Hui Wang ◽  
Chuan-Shan Zhang ◽  
Bin-Bin Fang ◽  
Jiao Hou ◽  
Wen-Ding Li ◽  
...  

Echinococcus multilocularis larvae, predominantly located in the liver, cause a tumor-like parasitic disease, alveolar echinococcosis (AE), that is characterized by increased infiltration of various immune cells, including macrophages, around the lesion that produces an “immunosuppressive” microenvironment, favoring its persistent infection. However, the role of hepatic macrophages in the host defense against E. multilocularis infection remains poorly defined. Using human liver tissues from patients with AE and a hepatic experimental mouse model of E. multilocularis, we investigated the phenotype and function of hepatic macrophages during the parasite infection. In the present study, we found that a large number of CD68+ macrophages accumulated around the metacestode lesion in the liver of human AE samples and that both S100A9+ proinflammatory (M1 phenotype) and CD163+ anti-inflammatory (M2 phenotype) macrophages were significantly higher in close liver tissue (CLT) than in distant liver tissue (DLT), whereas M2 macrophages represent the dominant macrophage population. Furthermore, E. multilocularis-infected mice exhibited a massive increase in macrophage (F4/80+) infiltration in the liver as early as day 5, and the infiltrated macrophages were mainly monocyte-derived macrophages (CD11bhi F4/80int MoMFs) that preferentially differentiated into the M1 phenotype (iNOS+) at the early stage of E. multilocularis infection and then polarized to anti-inflammatory macrophages of the M2 phenotype (CD206+) at the chronic stage of infection. We further showed that elimination of macrophages by treatment of mice with clodronate-liposomes before E. multilocularis infection impaired worm expulsion and was accompanied by a reduction in liver fibrosis, yielding a high parasite burden. These results suggest that hepatic macrophages may play a dual role in the establishment and development of E. multilocularis metacestodes in which early larvae clearance is promoted by M1 macrophages while persistent metacestode infection is favored by M2 macrophages.


2020 ◽  
Vol 11 ◽  
Author(s):  
Chengliang Yang ◽  
Shaf Keshavjee ◽  
Mingyao Liu

Many drugs have been approved for clinical trials for the treatment of COVID-19 disease, focusing on either antiviral or anti-inflammatory approaches. Combining antiviral and anti-inflammatory drugs or therapies together may be more effective. Human alpha-1 antitrypsin (A1AT) is a blood circulating glycoprotein that is best known as a protease inhibitor. It has been used to treat emphysema patients with A1AT deficiency for decades. We and others have demonstrated its role in reducing acute lung injury by inhibiting inflammation, cell death, coagulation, and neutrophil elastase activation. Recently, A1AT has been found to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by inhibiting transmembrane serine protease 2 (TMPRSS2), a protease involved in the entry of SARS-CoV-2 into host cells. This dual role of both antiviral infection and anti-inflammation makes A1AT a unique and excellent candidate for COVID-19 treatment. Three clinical trials of A1AT for COVID-19 treatment have recently been approved in several countries. It is important to determine whether A1AT can prevent the progress from moderate to severe lung injury and eventually to be used to treat COVID-19 patients with acute respiratory distress syndrome.


2018 ◽  
Vol 215 (8) ◽  
pp. 1967-1969 ◽  
Author(s):  
Claudia Berek

In this issue of JEM, Arnold et al. (https://doi.org/10.1084/jem.20172049) demonstrate that eosinophils suppress mucosal inflammation by directly interacting with pro-inflammatory Th1 cells. This emphasizes the dual role of eosinophils, which can act both as effector cells that control an infection and as immunomodulatory cells that promote immune homeostasis.


2014 ◽  
Vol 122 (03) ◽  
Author(s):  
A Chatzigeorgiou ◽  
R Garcia-Martin ◽  
KJ Chung ◽  
I Alexaki ◽  
A Klotzsche-von Ameln ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document