hepatic macrophages
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 62)

H-INDEX

30
(FIVE YEARS 6)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Ester García-Pras ◽  
Anabel Fernández-Iglesias ◽  
Jordi Gracia-Sancho ◽  
Sofía Pérez-del-Pulgar

Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.


Author(s):  
Chunye Zhang ◽  
Shuai Liu ◽  
Ming Yang

Tissue-resident macrophages play critically important roles in host homeostasis and pathogenesis of diseases, with the functions of phagocytosis, metabolism, and immune modulation. Recently, two research studies accomplished by a collaborated group of researchers showed that there are two populations of liver resident Kupffer cells (KCs), including a major cluster of differentiation 206 low expression (CD206low)endothelial cell-selective adhesion molecule negative (ESAM-) population (KC1) and a minor CD206highESAM+ population (KC2). Both KC1 and KC2 express KC markers, such as C-type lectin domain family 4 member F (CLEC4F) and T-cell membrane protein 4 (Tim4). In fatty liver, the frequency of KC2 was increased, and those KC2 expressed some markers like liver sinusoidal endothelial cells (LSECs), such as CD31 and ESAM. In addition, KC2 population had a relatively higher expression of CD36, as fatty acid transporter, which was implicated in the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, this collaborated group also showed that KC2 can cross-present hepatocellular antigens to prime antiviral function of CD8+ T cells by sensing interleukin-2 (IL-2) in hepatitis B virus (HBV) replication-competent transgenic mice. Increasing evidence shows that targeting hepatic macrophages can prevent and reverse non-alcoholic fatty liver disease (NAFLD), with a new suggested name metabolic dysfunction-associated fatty liver disease (MAFLD) to include metabolic dysfunction-associated fatty liver diseases, such as viruses and alcohol. In summary, differentiating specific populations of hepatic macrophages is critically important for the treatment of MAFLD or NAFLD, and their overlaps. Markers specifically expressed on sub-types of hepatic macrophages may be applied for liver disease diagnosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng Wang ◽  
Cheng Ma ◽  
Lihong Gong ◽  
Yuqin Guo ◽  
Ke Fu ◽  
...  

Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liyun Xu ◽  
Wen Liu ◽  
Fuxiang Bai ◽  
Yong Xu ◽  
Xiaohong Liang ◽  
...  

Fatty liver disease, characterized by excessive inflammation and lipid deposition, is becoming one of the most prevalent liver metabolic diseases worldwide owing to the increasing global incidence of obesity. However, the underlying mechanisms of fatty liver disease are poorly understood. Accumulating evidence suggests that hepatic macrophages, specifically Kupffer cells (KCs), act as key players in the progression of fatty liver disease. Thus, it is essential to examine the current evidence of the roles of hepatic macrophages (both KCs and monocyte-derived macrophages). In this review, we primarily address the heterogeneities and multiple patterns of hepatic macrophages participating in the pathogenesis of fatty liver disease, including Toll-like receptors (TLRs), NLRP3 inflammasome, lipotoxicity, glucotoxicity, metabolic reprogramming, interaction with surrounding cells in the liver, and iron poisoning. A better understanding of the diverse roles of hepatic macrophages in the development of fatty liver disease may provide a more specific and promising macrophage-targeting therapeutic strategy for inflammatory liver diseases.


2021 ◽  
Vol 27 (43) ◽  
pp. 7509-7529
Author(s):  
Xiu-Fang Lv ◽  
An-Qi Zhang ◽  
Wei-Qi Liu ◽  
Min Zhao ◽  
Jing Li ◽  
...  

2021 ◽  
Author(s):  
Guixian Ji ◽  
Man Liu ◽  
Yi Zhou ◽  
Weilong Zhong ◽  
Xiaoyi Wang ◽  
...  

Abstract ObjectiveIt was to evaluate the anti-inflammatory effect of ursodeoxycholic acid (UDCA) on concanavalin A (ConA)-induced immune hepatitis in mice and determine the molecular mechanism. MethodsFemale C57BL/6J mice were randomly classified into Control, ConA, and ConA+UDCA groups. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect the expression of hepatic inflammatory factor tumor necrosis factor-α (TNF-α), and receptor-interacting protein (RIP)3 mRNA. The percentages of immune cells in liver and spleen were detected and analyzed by flow cytometry. ResultsUDCA decreased the serum ALT and AST levels, down-regulated the expression of cytokine TNF-α mRNA and necroptosis marker RIP3 mRNA in the liver tissue, up-regulated the percentages of immunomodulatory myeloid-derived suppressor cells (MDSCs) in liver and spleen tissues, and down-regulated the accumulation of liver macrophages of mice with immune hepatitis. ConclusionsUDCA attenuates ConA-induced hepatic inflammation in mice by reducing the production of hepatic inflammatory factors, inhibiting the expression of necroptosis signal proteins in hepatocytes, down-regulating the accumulation of hepatic macrophages, and increasing the percentage of MDSCs with immunomodulatory properties.


Author(s):  
Yuanfa Feng ◽  
Hongyan Xie ◽  
Feihu Shi ◽  
Dianhui Chen ◽  
Anqi Xie ◽  
...  

S. japonicum infection can induce granulomatous inflammation in the liver of the host. Granulomatous inflammation limits the spread of infection and plays a role in host protection. Toll-like receptor 7 (TLR7) is an endosomal TLR that recognizes single-stranded RNA (ssRNA). In this study, the role of TLR7 in S. japonicum infection-induced hepatitis was investigated in both normal and TLR7 knockout (KO) C57BL/6 mice. The results indicated that TLR7 KO could aggravate S. japonicum infection-induced damage in the body, with less granuloma formation in the tissue, lower WBCs in blood, and decreased ALT and AST in the serum. Then, the expression of TLR7 was detected in isolated hepatic lymphocytes. The results indicated that the percentage of TLR7+ cells was increased in the infected mice. Hepatic macrophages, DCs, and B cells could express TLR7, and most of the TLR7-expressing cells in the liver of infected mice were macrophages. The percentage of TLR7-expressing macrophages was also increased after infection. Moreover, macrophages, T cells, and B cells showed significant changes in the counts, activation-associated molecule expression, and cytokine secretion between S. japonicum-infected WT and TLR7 KO mice. Altogether, this study indicated that TLR7 could delay the progression of S. japonicum infection-induced hepatitis mainly through macrophages. DCs, B cells, and T cells were involved in the TLR7-mediated immune response.


Author(s):  
Lisha Chen ◽  
Yan Huang ◽  
Zhixi Duan ◽  
Peiqi Huang ◽  
Hongbing Yao ◽  
...  

Liver fibrosis is an outcome of chronic hepatic injury, which can eventually result in cirrhosis, liver failure, and even liver cancer. The activation of hepatic stellate cell (HSC) is a prominent driver of liver fibrosis. Recently, it has been found that the crosstalk between HSCs and immune cells, including hepatic macrophages, plays an important role in the initiation and development of liver fibrosis. As a vital vehicle of intercellular communication, exosomes transfer specific cargos into HSCs from macrophages. Here, we show that exosomes derived from lipopolysaccharide (LPS)-treated macrophages has higher expression level of miR-500. And overexpression or inhibition of miR-500 in macrophage exosomes could promote or suppress HSC proliferation and activation. Treatment of exosomes with miR-500 overexpression can accelerate liver fibrosis in CCl4-induced liver fibrosis mouse model. miR-500 promotes HSC activation and liver fibrosis via suppressing MFN2. Moreover, miR-500 in serum exosomes could be a biomarker for liver fibrosis. Taken together, exosomal miR-500 derived from LPS-activated macrophages promotes HSC proliferation and activation by targeting MFN2 in liver fibrosis.


Inflammation ◽  
2021 ◽  
Author(s):  
Shogo Kawaguchi ◽  
Hirotake Sakuraba ◽  
Momone Horiuchi ◽  
Jiangli Ding ◽  
Tomoh Matsumiya ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yiming Lei ◽  
Sizhe Wan ◽  
Huiling Liu ◽  
Haoxiong Zhou ◽  
Lingjun Chen ◽  
...  

AbstractAcute liver injury (ALI) caused by multiple inflammatory responses is a monocyte-/macrophage-mediated liver injury that is associated with high morbidity and mortality. Liver macrophage activation is a vital event that triggers ALI. However, the mechanism of liver macrophage activation has not been fully elucidated. This study examined the role of β-arrestin1 (ARRB1) in wild-type (WT) and ARRB1-knockout (ARRB1-KO) mouse models of ALI induced by lipopolysaccharide (LPS), and ARRB1-KO mice exhibited more severe inflammatory injury and liver macrophage activation compared to WT mice. We found that LPS treatment reduced the expression level of ARRB1 in Raw264.7 and THP-1 cell lines, and mouse primary hepatic macrophages. Overexpression of ARRB1 in Raw264.7 and THP-1 cell lines significantly attenuated LPS-induced liver macrophage activation, such as transformation in cell morphology and enhanced expression of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), while downregulation of ARRB1 by small interfering RNA and ARRB1 deficiency in primary hepatic macrophages both aggravated macrophage activation. Moreover, overexpression of ARRB1 suppressed LPS-induced endoplasmic reticulum (ER) stress in liver macrophages, and inhibition of ER stress impeded excessive hepatic macrophage activation induced by downregulation of ARRB1. Our data demonstrate that ARRB1 relieves LPS-induced ALI through the ER stress pathway to regulate hepatic macrophage activation and that ARRB1 may be a potential therapeutic target for ALI.


Sign in / Sign up

Export Citation Format

Share Document