metabolic dysregulation
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 228)

H-INDEX

38
(FIVE YEARS 12)

Author(s):  
Julian Schwärzler ◽  
Lisa Mayr ◽  
Bernhard Radlinger ◽  
Felix Grabherr ◽  
Maureen Philipp ◽  
...  

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 124
Author(s):  
Mundeep K. Kainth ◽  
Joanna S. Fishbein ◽  
Teresa Aydillo ◽  
Alba Escalera ◽  
Rachael Odusanya ◽  
...  

The most effective intervention for influenza prevention is vaccination. However, there are conflicting data on influenza vaccine antibody responses in obese children. Cardio-metabolic parameters such as waist circumference, cholesterol, insulin sensitivity, and blood pressure are used to subdivide individuals with overweight or obese BMI into ‘healthy’ (MHOO) or ‘unhealthy’ (MUOO) metabolic phenotypes. The ever-evolving metabolic phenotypes in children may be elucidated by using vaccine stimulation to characterize cytokine responses. We conducted a prospective cohort study evaluating influenza vaccine responses in children. Participants were identified as either normal-weight children (NWC) or overweight/obese using BMI. Children with obesity were then characterized using metabolic health metrics. These metrics consisted of changes in serum cytokine and chemokine concentrations measured via multiplex assay at baseline and repeated at one month following vaccination. Changes in NWC, MHOO and MUOO were compared using Chi-square/Fisher’s exact test for antibody responses and Kruskal–Wallis test for cytokines. Differences in influenza antibody responses in normal, MHOO and MUOO children were statistically indistinguishable. IL-13 was decreased in MUOO children compared to NWC and MHOO children (p = 0.04). IL-10 approached a statistically significant decrease in MUOO compared to MHOO and NWC (p = 0.07). Influenza vaccination does not provoke different responses in NCW, MHOO, or MUOO children, suggesting that obesity, whether metabolically healthy or unhealthy, does not alter the efficacy of vaccination. IL-13 levels in MUO children were significantly different from levels in normal and MHOO children, indicating that the metabolically unhealthy phenotypes may be associated with an altered inflammatory response. A larger sample size with greater numbers of metabolically unhealthy children may lend more insight into the relationship of chronic inflammation secondary to obesity with vaccine immunity.


2022 ◽  
Vol 8 ◽  
Author(s):  
J. Samael Rodríguez-Sanabria ◽  
Rebeca Escutia-Gutiérrez ◽  
Rebeca Rosas-Campos ◽  
Juan S. Armendáriz-Borunda ◽  
Ana Sandoval-Rodríguez

Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis accompanied by one of three features: overweight or obesity, T2DM, or lean or normal weight with evidence of metabolic dysregulation. It is distinguished by excessive fat accumulation in hepatocytes, and a decrease in the liver's ability to oxidize fats, the accumulation of ectopic fat, and the activation of proinflammatory pathways. Chronic damage will keep this pathophysiologic cycle active causing progression from hepatic steatosis to cirrhosis and eventually, hepatocarcinoma. Epigenetics affecting gene expression without altering DNA sequence allows us to study MAFLD pathophysiology from a different perspective, in which DNA methylation processes, histone modifications, and miRNAs expression have been closely associated with MAFLD progression. However, these considerations also faced us with the circumstance that modifying those epigenetics patterns might lead to MAFLD regression. Currently, epigenetics is an area of great interest because it could provide new insights in therapeutic targets and non-invasive biomarkers. This review comprises an update on the role of epigenetic patterns, as well as innovative therapeutic targets and biomarkers in MAFLD.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Tobias Puengel ◽  
Beate Weber ◽  
Theresa H. Wirtz ◽  
Lukas Buendgens ◽  
Sven H. Loosen ◽  
...  

Soluble receptor activator of nuclear factor κ B ligand (sRANKL) is a member of the tumor necrosis factor receptor superfamily, and therefore, involved in various inflammatory processes. The role of sRANKL in the course of bone remodeling via activation of osteoclasts as well as chronic disease progression has been described extensively. However, the potential functional importance of sRANKL in critically ill or septic patients remained unknown. Therefore, we measured sRANKL serum concentrations in 303 critically ill patients, including 203 patients with sepsis and 100 with non-sepsis critical illness. Results were compared to 99 healthy controls. Strikingly, in critically ill patients sRANKL serum levels were significantly decreased at intensive care unit (ICU) admission (p = 0.011) without differences between sepsis and non-sepsis patients. Inline, sRANKL was correlated with markers of metabolic dysregulation, such as pre-existing diabetes and various adipokines (e.g., adiponectin, leptin receptor). Importantly, overall mortality of critically ill patients in a three-year follow-up was significantly associated with decreased sRANKL serum concentrations at ICU admission (p = 0.038). Therefore, our study suggests sRANKL as a biomarker in critically ill patients which is associated with poor prognosis and overall survival beyond ICU stay.


2021 ◽  
Vol 14 (713) ◽  
Author(s):  
Ekin Guney ◽  
Ana Paula Arruda ◽  
Günes Parlakgul ◽  
Erika Cagampan ◽  
Nina Min ◽  
...  

2021 ◽  
Author(s):  
Hung Nguyen ◽  
Sanjeev Gurshaney ◽  
Anamaria Morales Alvarez ◽  
Kevin Ezhakunnel ◽  
Andrew Manalo ◽  
...  

Cellular metabolic dysregulation is a consequence of COVID-19 infection that is a key determinant of disease severity. To understand the mechanisms underlying these cellular changes, we performed high-dimensional immune cell profiling of PBMCs from COVID-19-infected patients, in combination with single cell transcriptomic analysis of COVID-19 BALFs. Hypoxia, a hallmark of COVID-19 ARDS, was found to elicit a global metabolic reprogramming in effector lymphocytes. In response to oxygen and nutrient-deprived microenvironments, these cells shift from aerobic respiration to increase their dependence on anaerobic processes including glycolysis, mitophagy, and glutaminolysis to fulfill their bioenergetic demands. We also demonstrate metabolic dysregulation of ciliated lung epithelial cells is linked to significant increase of proinflammatory cytokine secretion and upregulation of HLA class 1 machinery. Augmented HLA class-1 antigen stimulation by epithelial cells leads to cellular exhaustion of metabolically dysregulated CD8 and NK cells, impairing their memory cell differentiation. Unsupervised clustering techniques revealed multiple distinct, differentially abundant CD8 and NK memory cell states that are marked by high glycolytic flux, mitochondrial dysfunction, and cellular exhaustion, further highlighting the connection between disrupted metabolism and impaired memory cell function in COVID-19. Our findings provide novel insight on how SARS-CoV-2 infection affects host immunometabolism and anti-viral response during COVID-19.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xi He ◽  
Chenshu Liu ◽  
Jiangyun Peng ◽  
Zilun Li ◽  
Fang Li ◽  
...  

AbstractAbnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 825
Author(s):  
Silvia Carraro ◽  
Valentina Agnese Ferraro ◽  
Michela Maretti ◽  
Giuseppe Giordano ◽  
Paola Pirillo ◽  
...  

There is growing interest for studying how early-life influences the development of respiratory diseases. Our aim was to apply metabolomic analysis to urine collected at birth, to evaluate whether there is any early metabolic signatures capable to distinguish children who will develop acute bronchiolitis and/or recurrent wheezing. Urine was collected at birth in healthy term newborns. Children were followed up to the age of 3 years and evaluated for the development of acute bronchiolitis and recurrent wheezing (≥3 episodes). Urine were analyzed through a liquid-chromatography mass-spectrometry based untargeted approach. Metabolomic data were investigated applying univariate and multivariate techniques. 205 children were included: 35 had bronchiolitis, 11 of whom had recurrent wheezing. Moreover, 13 children had recurrent wheezing not preceded by bronchiolitis. Multivariate data analysis didn’t lead to reliable classification models capable to distinguish children with and without bronchiolitis or with recurrent wheezing preceded by bronchiolitis neither by PLS for classification (PLS2C) nor by Random Forest (RF). However, a reliable signature was discovered to distinguish children who later develop recurrent wheezing not preceded by bronchiolitis, from those who do not (MCCoob = 0.45 for PLS2C and MCCoob = 0.48 for RF). In this unselected birth cohort, a well-established untargeted metabolomic approach found no biochemical-metabolic dysregulation at birth associated with the subsequent development of acute bronchiolitis or recurrent wheezing post-bronchiolitis, not supporting the hypothesis of an underlying predisposing background. On the other hand, a metabolic signature was discovered that characterizes children who develop wheezing not preceded by bronchiolitis.


Sign in / Sign up

Export Citation Format

Share Document