transmembrane serine protease
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 140)

H-INDEX

33
(FIVE YEARS 8)

2022 ◽  
pp. 194589242110596
Author(s):  
Tomohiro Kawasumi ◽  
Sachio Takeno ◽  
Takashi Ishino ◽  
Tsutomu Ueda ◽  
Takao Hamamoto ◽  
...  

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses angiotensin-converting enzyme-2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) as a primary receptor for invasion. Cell entry by the virus requires the co-expression of these molecules in the host cells. Objective We investigated ACE2 and TMPRSS2 expression and localization in paranasal epithelium of eosinophilic chronic rhinosinusitis (ECRS) patients (n = 38), non-ECRS (n = 31), and healthy controls (n = 25). CRS inflammatory patterns are characterized by the type of cytokines; we investigated whether inflammatory endotypes are associated with cell-entry molecules, as this could be linked to susceptibility to SARS-CoV-2 infection. Methods The ACE2, TMPRSS2, and other inflammatory cytokine mRNA levels were assessed by quantitative RT-PCR. The localizations of ACE2- and TMPRSS2-positive cells were examined with immunofluorescent double-staining using laser scanning confocal microscopy (LSCM). Results The non-ECRS patients showed significantly increased ACE2 and TMPRSS2 mRNA expressions compared to the ECRS patients. The CRS patients’ ACE2 and TMPRSS2 mRNA levels were positively correlated with IFN-γ ( r = 0.3227 and r = 0.3264, respectively) and TNF-α ( r = 0.4008, r = 0.3962, respectively). ACE2 and TMPRSS2 were negatively correlated with tissue eosinophils ( r =  −0.3308, r =  −0.3112, respectively), but not with IL-13. ACE2 mRNA levels were positively correlated with TMPRSS2 ( r = 0.7478). ACE2 and TMPRSS2 immunoreactivities were localized mainly in the epithelial ciliated cells, as confirmed by co-staining with TMPRSS2 and acetylated α-tubulin, a cilia organelle marker. Using LSCM imaging, we observed higher expressions of these molecules in the non-ECRS patients versus the ECRS patients. Conclusion ECRS patients with type 2 inflammation showed decreased ACE2 and TMPRSS2 expressions in their sinus mucosa. ACE2 and TMPRSS2 regulation seems to be positively related to IFN-γ and TNF-α production in CRS patients; ACE2 and TMPRSS2 were co-expressed in the ciliated epithelium of their paranasal mucosa, implicating the paranasal epithelium as a portal for initial infection and transmission.


2021 ◽  
Author(s):  
Jérôme Gatineau ◽  
Charlotte Nidercorne ◽  
Aurélie Dupont ◽  
Marie-Line Puiffe ◽  
José L Cohen ◽  
...  

The secreted enzyme interleukin four-induced gene 1 (IL4I1) is involved in the negative control of the adaptive immune response. IL4I1 expression in human cancer is frequent and correlates with poor survival and resistance to immunotherapy. Nevertheless, its mechanism of action remains partially unknown. Here, we identified transmembrane serine protease 13 (TMPRSS13) as an immune cell-expressed surface protein that binds IL4I1. TMPRSS13 is a paralog of TMPRSS2, whose protease activity participates in the cleavage of SARS-Cov2 Spike protein and facilitates virus induced-membrane fusion. We show that TMPRSS13 is expressed by human lymphocytes, monocytes and monocyte-derived macrophages, can cleave the Spike protein and allow Sars-Cov2 Spike pseudotyped virus entry into cells. We identify regions of homology between IL4I1 and Spike and demonstrate competition between the two proteins for TMPRSS13 binding. These findings may be relevant for both interfering with SARS-Cov2 infection and limiting IL4I1-dependent immunosuppressive activity in cancer.


2021 ◽  
Author(s):  
Kamal Rawal ◽  
Prashant Singh ◽  
Robin Sinha ◽  
Priya Kumari ◽  
Swarsat Kaushik Nath ◽  
...  

The outbreak of the novel coronavirus disease COVID-19, caused by the SARS-CoV-2 virus has killed over 5 million people to date. So, there is an urgent requirement for new and effective medications that can treat the disease caused by SARS-CoV-2. To find new drugs, identification of drug targets is necessary (Chen et al., 2016). Number of research studies have identified therapeutic targets such as helicases, transmembrane serine protease 2, cathepsin L, cyclin G-associated kinase, adaptor associated kinase 1, two-pore channel, viral virulence factors, 3-chymotrypsin-like protease, suppression of excessive inflammatory response, inhibition of viral membrane, nucleocapsid, envelope, and accessory proteins, and inhibition of endocytosis. Here we present a web enabled tool which helps in ranking the COVID-19 drugs based upon underlying molecular targets. The users are allowed to give drugs in SMILE format and the tools will provide the list of relevant targets related to COVID-19.


2021 ◽  
Vol 8 (12) ◽  
pp. 1996
Author(s):  
Chandan Raybarman ◽  
Surajit Bhattacharjee

Type II transmembrane serine protease (TMPRSS2) is expressed at the cell surface with COVID-19 infection. And COVID-19 infection misuse TMPRSS2 to advance their spread, making this protease potential focuses for intervention in COVID-19 infection. TMPRSS2 blocker may be the appropriate option to arrest cellular entry of COVID-19 by deregulating spike priming. Therefore a trial may be intended to watch the adequacy of aerosolized spraying of TMPRSS2 inhibitors to break the viral entry to the objective cells that empower to break the COVID-19 transmission. Targeting TMPRSS2 through aerosolized TMPRSS2 inhibitor is important to examine a possibly viable remedial technique in the treatment of COVID-19.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6783
Author(s):  
Priyanka Saha ◽  
Subhankar Bose ◽  
Amit Kumar Srivastava ◽  
Anis Ahmad Chaudhary ◽  
Rajiv Lall ◽  
...  

The novel coronavirus disease (COVID-19), the reason for worldwide pandemic, has already masked around 220 countries globally. This disease is induced by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Arising environmental stress, increase in the oxidative stress level, weak immunity and lack of nutrition deteriorates the clinical status of the infected patients. Though several researches are at its peak for understanding and bringing forward effective therapeutics, yet there is no promising solution treating this disease directly. Medicinal plants and their active metabolites have always been promising in treating many clinical complications since time immemorial. Mother nature provides vivid chemical structures, which act multi-dimensionally all alone or synergistically in mitigating several diseases. Their unique antioxidant and anti-inflammatory activity with least side effects have made them more effective candidate for pharmacological studies. These medicinal plants inhibit attachment, encapsulation and replication of COVID-19 viruses by targeting various signaling molecules such as angiotensin converting enzyme-2, transmembrane serine protease 2, spike glycoprotein, main protease etc. This property is re-examined and its potency is now used to improve the existing global health crisis. This review is an attempt to focus various antiviral activities of various noteworthy medicinal plants. Moreover, its implications as prophylactic or preventive in various secondary complications including neurological, cardiovascular, acute kidney disease, liver disease are also pinpointed in the present review. This knowledge will help emphasis on the therapeutic developments for this novel coronavirus where it can be used as alone or in combination with the repositioned drugs to combat COVID-19.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2225
Author(s):  
Fengyi Liang ◽  
De Yun Wang

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of coronavirus disease 2019 (COVID-19). It is known as a respiratory virus, but SARS-CoV-2 appears equally, or even more, infectious for the olfactory epithelium (OE) than for the respiratory epithelium in the nasal cavity. In light of the small area of the OE relative to the respiratory epithelium, the high prevalence of olfactory dysfunctions (ODs) in COVID-19 has been bewildering and has attracted much attention. This review aims to first examine the cytological and molecular biological characteristics of the OE, especially the microvillous apical surfaces of sustentacular cells and the abundant SARS-CoV-2 receptor molecules thereof, that may underlie the high susceptibility of this neuroepithelium to SARS-CoV-2 infection and damages. The possibility of SARS-CoV-2 neurotropism, or the lack of it, is then analyzed with regard to the expression of the receptor (angiotensin-converting enzyme 2) or priming protease (transmembrane serine protease 2), and cellular targets of infection. Neuropathology of COVID-19 in the OE, olfactory bulb, and other related neural structures are also reviewed. Toward the end, we present our perspectives regarding possible mechanisms of SARS-CoV-2 neuropathogenesis and ODs, in the absence of substantial viral infection of neurons. Plausible causes for persistent ODs in some COVID-19 convalescents are also examined.


2021 ◽  
Vol 22 (21) ◽  
pp. 11814
Author(s):  
Andrea Valeri ◽  
Luigi Chiricosta ◽  
Agnese Gugliandolo ◽  
Mara Biasin ◽  
Maria Antonietta Avanzini ◽  
...  

The inflammatory response plays a central role in the complications of congenital pulmonary airway malformations (CPAM) and severe coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the transcriptional changes induced by SARS-CoV-2 exposure in pediatric MSCs derived from pediatric lung (MSCs-lung) and CPAM tissues (MSCs-CPAM) in order to elucidate potential pathways involved in SARS-CoV-2 infection in a condition of exacerbated inflammatory response. MSCs-lung and MSCs-CPAM do not express angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TRMPSS2). SARS-CoV-2 appears to be unable to replicate in MSCs-CPAM and MSCs-lung. MSCs-lung and MSCs-CPAM maintained the expression of stemness markers MSCs-lung show an inflammatory response (IL6, IL1B, CXCL8, and CXCL10), and the activation of Notch3 non-canonical pathway; this route appears silent in MSCs-CPAM, and cytokine genes expression is reduced. Decreased value of p21 in MSCs-lung suggested no cell cycle block, and cells did not undergo apoptosis. MSCs-lung appears to increase genes associated with immunomodulatory function but could contribute to inflammation, while MSCs-CPAM keeps stable or reduce the immunomodulatory receptors expression, but they also reduce their cytokines expression. These data indicated that, independently from their perilesional or cystic origin, the MSCs populations already present in a patient affected with CPAM are not permissive for SARS-CoV-2 entry, and they will not spread the disease in case of infection. Moreover, these MSCs will not undergo apoptosis when they come in contact with SARS-CoV-2; on the contrary, they maintain their staminality profile.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mehdi Mahmudpour ◽  
Iraj Nabipour ◽  
Mohsen Keshavarz ◽  
Maryam Farrokhnia

Although SARS-CoV-2 entry to cells strictly depends on angiotensin-converting enzyme 2 (ACE2), the virus also needs transmembrane serine protease 2 (TMPRSS2) for its spike protein priming. It has been shown that the entrance of SARS-CoV-2 through ACE2 can be blocked by cellular TMPRSS2 blockers. The main aim of this study was to find potential inhibitor(s) of TMPRSS2 through virtual screening against a homology model of TMPRSS2 using the library of marine natural products (MNPs). The homology modeling technique for generating a three-dimensional structure of TMPRSS2 was applied. Molecular docking, MM-GBSA and absorption, distribution, metabolism, excretion (ADME) evaluations were performed to investigate the inhibitory activity of marine natural products (MNPs) against TMPRSS2 and their pharmacokinetic properties. Camostat and nafamostat mesylate were used as the standard inhibitory molecules. Seven MNPs were able to inhibit TMPRSS2 better than the standard compounds. MNP 10 with CAS number 107503-09-3, called Watasenia β-D- Preluciferyl glucopyrasoiuronic acid, was found to be the best inhibitor of TMPRSS2 with acceptable pharmacokinetic properties. Herein, for the first time, a new marine natural product was introduced with potent inhibitory effects against TMPRSS2. MNP 10 exhibited favorable drug-like pharmacokinetic properties and it promises a novel TMPRSS2 blocker to combat SARS-CoV-2.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4946
Author(s):  
Katharina Dendl ◽  
Stefan Koerber ◽  
Clemens Kratochwil ◽  
Jens Cardinale ◽  
Rebecca Finck ◽  
...  

A fibroblast activation protein (FAP) is an atypical type II transmembrane serine protease with both endopeptidase and post-proline dipeptidyl peptidase activity. FAP is overexpressed in cancer-associated fibroblasts (CAFs), which are found in most epithelial tumors. CAFs have been implicated in promoting tumor cell invasion, angiogenesis and growth and their presence correlates with a poor prognosis. However, FAP can generally be found during the remodeling of the extracellular matrix and therefore can be detected in wound healing and benign diseases. For instance, chronic inflammation, arthritis, fibrosis and ischemic heart tissue after a myocardial infarction are FAP-positive diseases. Therefore, quinoline-based FAP inhibitors (FAPIs) bind with a high affinity not only to tumors but also to a variety of benign pathologic processes. When these inhibitors are radiolabeled with positron emitting radioisotopes, they provide new diagnostic and prognostic tools as well as insights into the role of the microenvironment in a disease. In this respect, they deliver additional information beyond what is afforded by conventional FDG PET scans that typically report on glucose uptake. Thus, FAP ligands are considered to be highly promising novel tracers that offer a new diagnostic and theranostic potential in a variety of diseases.


Sign in / Sign up

Export Citation Format

Share Document