Experimental Implementation of Tracking Error Elimination for Omnidirectional Wheelchair Using PD-Fuzzy-P Controller

2021 ◽  
Vol 14 (2) ◽  
pp. 102
Author(s):  
Wafa Batayneh ◽  
Yusra Aburmaileh ◽  
Ahmad Bataineh
Meccanica ◽  
2021 ◽  
Author(s):  
Dóra Patkó ◽  
Ambrus Zelei

AbstractFor both non-redundant and redundant systems, the inverse kinematics (IK) calculation is a fundamental step in the control algorithm of fully actuated serial manipulators. The tool-center-point (TCP) position is given and the joint coordinates are determined by the IK. Depending on the task, robotic manipulators can be kinematically redundant. That is when the desired task possesses lower dimensions than the degrees-of-freedom of a redundant manipulator. The IK calculation can be implemented numerically in several alternative ways not only in case of the redundant but also in the non-redundant case. We study the stability properties and the feasibility of a tracking error feedback and a direct tracking error elimination approach of the numerical implementation of IK calculation both on velocity and acceleration levels. The feedback approach expresses the joint position increment stepwise based on the local velocity or acceleration of the desired TCP trajectory and linear feedback terms. In the direct error elimination concept, the increment of the joint position is directly given by the approximate error between the desired and the realized TCP position, by assuming constant TCP velocity or acceleration. We investigate the possibility of the implementation of the direct method on acceleration level. The investigated IK methods are unified in a framework that utilizes the idea of the auxiliary input. Our closed form results and numerical case study examples show the stability properties, benefits and disadvantages of the assessed IK implementations.


2002 ◽  
Vol 124 (4) ◽  
pp. 668-674 ◽  
Author(s):  
Nader Sadegh ◽  
Ai-Ping Hu ◽  
Courtney James

This paper describes a multirate repetitive learning controller with an adjustable sampling rate that may be used as an “add-on” module to enhance the tracking performance of a feedback control system. The sampling rate of the multirate controller is slower than the remainder of the control system, and is selected by the user to achieve the required system performance based on a trade-off between the accuracy and the complexity of the controller. The multirate controller learns the system control input based on the tracking error down-sampled using a weighted averaging filter. The output of the multirate controller is up-sampled through an arbitrary hold mechanism determined by the user. This paper extends the existing stability results for single-rate repetitive learning controllers to the proposed multirate scheme. It provides an explicit procedure for its design and stability analysis. In addition, the proposed multirate repetitive learning controller is implemented on a mechanical system performing a non-colocated control task, where its effectiveness in reducing tracking errors while following periodic reference trajectories is shown experimentally.


2012 ◽  
Vol 132 (3) ◽  
pp. 347-356 ◽  
Author(s):  
Yuta Nabata ◽  
Tatsuya Nakazaki ◽  
Tokoku Ogata ◽  
Kiyoshi Ohishi ◽  
Toshimasa Miyazaki ◽  
...  

2016 ◽  
Vol 9 (5) ◽  
pp. 324 ◽  
Author(s):  
Zain Retas ◽  
Lokman Abdullah ◽  
Syed Najib Syed Salim ◽  
Zamberi Jamaludin ◽  
Nur Amira Anang

Vestnik MEI ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 119-126
Author(s):  
Vitaliy P. Kutepov ◽  
◽  
Mikhail I. Zubov ◽  

Author(s):  
G. N. Maltsev ◽  
A. V. Evteev

Introduction: Radio information transmission systems with noise-like phase-shift keyed signals based on pseudo-random sequences have potential noise immunity provided by accurately tracking the delay of the received signal in the correlation receiver. When working with moving objects, the delay of the received signal varies continuously, and the reception quality for noise-like phase-shifted signals highly depends on the synchronization system operation and on the accuracy of estimating the received signal delay by the tracking system. To ensure the required signal reception quality, it is necessary to provide an informed choice of tracking system parameters, taking into account their effects, which are the random and systematic components of the delay tracking error, on the selected noise immunity indicator.Purpose: Analyzing how the errors in tracking the delay of a received phase-shift keyed signal based on a pseudorandom sequence by the synchronization system of a radio information transmission system can affect the probability of erroneous reception of an information symbol.Results: The calculation method was used to obtain families of dependencies of the probability of erroneous reception of an information symbol on the signal-noise ratio (SNR), and the values of the random and systematic components of the delay tracking error which are normalized to the capture band of the correlation receiver. It has been shown that at a fixed SNR, the values of the random and systematic components of the delay tracking error are critical for the erroneous reception probability. In all the cases discussed, all the dependencies are characterized by a slow change of the erroneous reception probability while the synchronization errors within the area of small SNR have fixed values. As the SNR value grows, the erroneous reception probability rapidly drops. To ensure the specified signal reception quality and the reliability of the selection of information symbols and messages in a radio information transmission system with noise-like phase-manipulated signals, its synchronization system requires a joint selection of the tracking system parameters, taking into account the limitations imposed by the operating conditions and technical implementation features.Practical relevance: The obtained results can be used in noise immunity analysis of radio information transmission systems with noise-like phase-shift keyed signals in a wide range of communication conditions, and in providing technical solutions for synchronization systems ensuring the required quality of signal reception.


Sign in / Sign up

Export Citation Format

Share Document