Numerical Study of Natural Convection-Surface Radiation Coupling in Air-Filled Square Cavity Using the Gauss’s Theorem on Triangular Meshes

2016 ◽  
Vol 10 (3) ◽  
pp. 173
Author(s):  
Djelloul Becheri ◽  
Abdellah Belkacem
2006 ◽  
Vol 128 (10) ◽  
pp. 1012-1021 ◽  
Author(s):  
El Hassan Ridouane ◽  
Mohammed Hasnaoui

A numerical study of natural convection with surface radiation in an air filled square enclosure with a centrally heated bottom wall and cooled upper wall is presented. The vertical walls and the rest of the bottom wall are assumed to be insulated. The problem is studied for Rayleigh numbers Ra, ranging from 103 to 4×106 and surfaces emissivity ε, varying from 0 to 1. The governing equations, written in terms of stream function-vorticity formulation, are solved using a finite difference approach. It is found that, under these heating/cooling conditions, three different steady-state solutions are possible in the ranges of the parameters considered. Results are presented detailing the occurrence of each steady-state solution and the effect of Ra and ε on its range of existence. It is found that the surface radiation alters significantly the existence ranges of the solutions. For each solution, convective and radiative contributions to the global heat transfer are also quantified for various Ra and ε. The influence of the heated surface dimension on the fluid flow and thermal patterns is also presented by comparing the present results against those obtained by the authors in an earlier study within a square cavity totally heated from below.


Author(s):  
G. A. Sheikhzadeh ◽  
M. Pirmohammadi ◽  
M. Ghassemi

Numerical study natural convection heat transfer inside a differentially heated square cavity with adiabatic horizontal walls and vertical isothermal walls is investigated. Two perfectly conductive thin fins are attached to the isothermal walls. To solve the governing differential mass, momentum and energy equations a finite volume code based on Pantenkar’s simpler method is developed and utilized. The results are presented in form of streamlines, isotherms as well as Nusselt number for Rayleigh number ranging from 104 up to 107. It is shown that the mean Nusselt number is affected by the position of the fins and length of the fins as well as the Rayleigh number. It is also observed that maximum Nusselt number occurs about the middle of the enclosure where Lf is grater the 0.5. In addition the Nusselt number stays constant and does not varies with width of the cavity (lf) when Lf is equal to 0.5 and Rayleigh number is equal to 104 and 107 as well as when Lf is equal to 0.6 and low Rayleigh numbers.


2020 ◽  
Vol 330 ◽  
pp. 01029
Author(s):  
Mohamed Amine MEDEBBER ◽  
Abderrahmane AISSA ◽  
Belkacem OULD SAID ◽  
Noureddine RETIEL ◽  
Mohammed EL GANAOUI

The interaction of natural convection with thermal radiation of black surfaces in a cylindrical enclosure filled with air has been numerically investigated. The steady-state continuity, Navier-Stokes and energy equations were discretized using the control volume method and solved numerically via the SIMPLER algorithm. Effects of Rayleigh number (Ra), wall emissivity (εp) and height ratio parameter (X) are studied. The result shows that surface radiation significantly altered the temperature distribution and the flow patterns, especially at higher Rayleigh numbers. The total average Nusselt number has also been discussed for valuating heat transfer through the enclosure.


Sign in / Sign up

Export Citation Format

Share Document