Comparison of Net Meter Policy of Maharashtra with Other States in India for Solar PV Power Plant

2017 ◽  
Vol 11 (10) ◽  
pp. 780
Author(s):  
Aishvarya M. Khuntale ◽  
M. M. Wagh
Keyword(s):  
2021 ◽  
Vol 9 (2) ◽  
pp. 27-36
Author(s):  
Sheikh Hasib Cheragee ◽  
Nazmul Hassan ◽  
Sakil Ahammed ◽  
Abu Zafor Md. Touhidul Islam

We have Developed an IoT-based real-time solar power monitoring system in this paper. It seeks an opensource IoT solution that can collect real-time data and continuously monitor the power output and environmental conditions of a photovoltaic panel.The Objective of this work is to continuously monitor the status of various parameters associated with solar systems through sensors without visiting manually, saving time and ensures efficient power output from PV panels while monitoring for faulty solar panels, weather conditionsand other such issues that affect solar effectiveness.Manually, the user must use a multimeter to determine what value of measurement of the system is appropriate for appliance consumers, which is difficult for the larger System. But the Solar Energy Monitoring system is designed to make it easier for users to use the solar system.This system is comprised of a microcontroller (Node MCU), a PV panel, sensors (INA219 Current Module, Digital Temperature Sensor, LDR), a Battery Charger Module, and a battery. The data from the PV panels and other appliances are sent to the cloud (Thingspeak) via the internet using IoT technology and a Wi-Fi module (NodeMCU). It also allows users in remote areas to monitor the parameters of the solar power plant using connected devices. The user can view the current, previous, and average parameters of the solar PV system, such as voltage, current, temperature, and light intensity using a Graphical User Interface. This will facilitate fault detection and maintenance of the solar power plant easier and saves time.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qingjun Liu ◽  
Fei Cao ◽  
Yanhua Liu ◽  
Tianyu Zhu ◽  
Deyou Liu

A solar chimney PV/T power plant (SCPVTPP) is proposed. Mathematical models are established for the PV/T solar collector, the chimney, and the power conversion unit, respectively. Performances of the designed SCPVTPP are then simulated. The SCPVTPPs with different PV module areas are finally discussed. It is found that the PV cells hold the highest temperature in the solar collector. Temperature rise of the PV module has significant influences to its power generation. Without cooling, the PV power capacity has an average decrease of 28.71%. The contradictory influences of temperature rise and airflow cooling lead to an 11.81% decrease of the average power capacity. By adding the power generated by PVT, the total PV-related power contribution increases by 4.72%. With the increase of the solar collector ratio, the temperature rise and the wind velocity both first decrease then increase, the SCPP power productivity decreases linearly, and the PV power productivity increases linearly, whereas the PVT power productivity first increases linearly then increases superlinearly. There is a reversed solar collector ratio, exceeding which the PV generates most power. In this study, solar thermal power takes the major role when the solar PV area ratio is smaller than 0.055.


Sign in / Sign up

Export Citation Format

Share Document