The International Journal of Ambient Systems and Applications
Latest Publications


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

Published By Academy And Industry Research Collaboration Center

2320-9259, 2321-6344

Author(s):  
Md. Firoz Ahmed ◽  
Md. Faysal Ahmed ◽  
Abu Zafor Md. Touhidul Islam

Digital modulation increases information capacity, data security, and system availability while maintaining high communication quality. As a result, digital modulation techniques are in higher demand than analog modulation techniques due to their ability to transmit larger amounts of data. Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK), and Quadrature Amplitude Modulation (QAM) are critical components of current communications systems development, particularly for broadband wireless communications. In this paper, the comparison of bit error rate performance of different modulation schemes (BPSK, QPSK, and16-QAM) and various equalization techniques such as constant modulus algorithm (CMA) and maximum likelihood sequence estimate (MLSE) for the AWGN and Rayleigh fading channels is analyzed using Simulink. BPSK outperforms QPSK and 16-QAM when compared to the other two digital modulation schemes. Among the three digital modulation schemes, BPSK is showing better performance as compared to QPSK and 16-QAM.


2021 ◽  
Vol 9 (2) ◽  
pp. 27-36
Author(s):  
Sheikh Hasib Cheragee ◽  
Nazmul Hassan ◽  
Sakil Ahammed ◽  
Abu Zafor Md. Touhidul Islam

We have Developed an IoT-based real-time solar power monitoring system in this paper. It seeks an opensource IoT solution that can collect real-time data and continuously monitor the power output and environmental conditions of a photovoltaic panel.The Objective of this work is to continuously monitor the status of various parameters associated with solar systems through sensors without visiting manually, saving time and ensures efficient power output from PV panels while monitoring for faulty solar panels, weather conditionsand other such issues that affect solar effectiveness.Manually, the user must use a multimeter to determine what value of measurement of the system is appropriate for appliance consumers, which is difficult for the larger System. But the Solar Energy Monitoring system is designed to make it easier for users to use the solar system.This system is comprised of a microcontroller (Node MCU), a PV panel, sensors (INA219 Current Module, Digital Temperature Sensor, LDR), a Battery Charger Module, and a battery. The data from the PV panels and other appliances are sent to the cloud (Thingspeak) via the internet using IoT technology and a Wi-Fi module (NodeMCU). It also allows users in remote areas to monitor the parameters of the solar power plant using connected devices. The user can view the current, previous, and average parameters of the solar PV system, such as voltage, current, temperature, and light intensity using a Graphical User Interface. This will facilitate fault detection and maintenance of the solar power plant easier and saves time.


Author(s):  
Md. Firoz Ahmed ◽  
Md. Tahidul Islam ◽  
Abu Zafor Md. Touhidul Islam

Wireless communications are among the rapidly growing fields in our current life and have a massive effect on every aspect of our everyday life. In this paper, the performance of the various digital modulation techniques (BPSK, DPSK, QPSK, and QAM) based wireless communication system on the audio signal transmission through the additive Gaussian Noise (AWGN) channel is assessed on the basis of bit error rate (BER) as a function of the signal-to-noise ratio (SNR). Based on the results of this study, BPSK modulation outperforms the DPSK, QPSK, and QAM modulation strategies in the MIMO MC-CDMA VBlast based wireless communication system. The digital modulation of QPSK shows the worst performance in audio signal transmission especially in comparison to other digital modulations. It is clear from the current simulation study based on MATLAB that the V-Blast encoded 4×4 MIMO MC-CDMA wireless system with minimum mean square error (MMSE) signal detection and 1⁄2-rated convolution and cyclic redundancy check (CRC) channel encoding strategies show good performance utilizing BPSK digital modulation in audio signal transmission.


2021 ◽  
Vol 9 (2) ◽  
pp. 17-26
Author(s):  
Nazmul Hassan ◽  
Sheikh Hasib Cheragee ◽  
Sakil Ahammed ◽  
Abu Zafor Md. Touhidul Islam

This paper presents the development of a sensor based smart irrigation system with the capabilities of remote monitoring and controlling of water usage in the agriculture field using Internet of Things (IoT). With the employment of IoT in irrigation system, all agricultural information can be viewed and controlled at the user's fingertips. The system consists of a microcontroller (Node MCU), sensors (soil moisture, DHT11), and irrigation of a water pump with a decision-making system. Sensors are linked to a Wi-Fi module (Node MCU) and are interdependent to provide increased sensitivity to the irrigation system. The data obtained will be uploaded to the cloud (ThingSpeak) and presented in the form of graphs accessible via the website. A web page is used to control the water pump for irrigation purposes. This paper is managed to meet all of its aims to help farmers in terms of time, project cost, labor, water consumption, power consumption, and reliability by implementing the IoT-based smart irrigation system.


Sign in / Sign up

Export Citation Format

Share Document