A High-Speed Protection Scheme for Multiple-Priority-Class Traffic in WDM Ring Networks

2010 ◽  
Vol E93-B (5) ◽  
pp. 1172-1179
Author(s):  
Masahiro HAYASHITANI ◽  
Masahiro SAKAUCHI ◽  
Kiyoshi FUKUCHI
2021 ◽  
Vol 17 (1) ◽  
pp. 19-25
Author(s):  
Ayesha Faryal ◽  
Farhana Umer ◽  
Muhammad Amjad ◽  
Zeeshan Rashid ◽  
Aoun Muhammad

Abstract The protection of power system is an essential trait in a huge network to efficiently detect and isolate the sections undergoing faults or abnormal behaviour. The key components of a protection scheme include circuit breakers, relays, switchgears and fuses which employ communication from one station to another to achieve high-speed tripping. The automation of these components at the laboratory level using programmable logic controller (PLC) along with supervisory control and data acquisition (SCADA) system owns paramount importance for intelligent decision making, sensing, actuating, monitoring and maintaining the record in the host server. This paper discusses such a technique for conventional power system protection laboratory at a new level of development to promote a control system through PLC and SCADA. The control system has indication of over and under values of voltage, load and frequency, which can trigger malfunctioning of equipment and must be rectified. Furthermore, ground fault and inverse current indication are added to the system for monitoring and controlling purposes. The proposed system enhances the efficiency and safety of the expensive equipment and the personnel to the next level and also introduces new standards of automated protection schemes for modern technical institutes.


1986 ◽  
Vol PER-6 (1) ◽  
pp. 43-43 ◽  
Author(s):  
R. K. Aggarwal ◽  
A. T. Johns
Keyword(s):  

1992 ◽  
Author(s):  
W. Dobosiewicz ◽  
P. Gburzynski
Keyword(s):  

2021 ◽  
pp. 189-232
Author(s):  
Debasish Datta

With the emergence of high-speed optical transmission, the pre-existing plesiochronous digital hierarchy (PDH) appeared unsuitable for achieving network synchronization, leading to the development of the synchronous optical network (SONET) and synchronous digital hierarchy (SDH) as the two equivalent standards for circuit-switched optical networks. Several bandwidth-efficient techniques were also developed to carry packet-switched data traffic over SONET/SDH networks, offering some useful data-over-SONET/SDH architectures. Subsequently, with the increasing transmission rates for SONET/SDH and Ethernet-based LANs, a convergent networking platform called optical transport network (OTN), was developed. With the ever-increasing volume of bursty data traffic, a standard for packet-switched ring networks, called resilient packet ring (RPR), was also developed for better bandwidth realization in optical fibers. In this chapter, we first present the SONET/SDH networks and the techniques for supporting the data traffic therein, followed by a description of the basic concepts and salient features of the OTN and RPR networks. (147 words)


Sign in / Sign up

Export Citation Format

Share Document