SONET/SDH, OTN, and RPR

2021 ◽  
pp. 189-232
Author(s):  
Debasish Datta

With the emergence of high-speed optical transmission, the pre-existing plesiochronous digital hierarchy (PDH) appeared unsuitable for achieving network synchronization, leading to the development of the synchronous optical network (SONET) and synchronous digital hierarchy (SDH) as the two equivalent standards for circuit-switched optical networks. Several bandwidth-efficient techniques were also developed to carry packet-switched data traffic over SONET/SDH networks, offering some useful data-over-SONET/SDH architectures. Subsequently, with the increasing transmission rates for SONET/SDH and Ethernet-based LANs, a convergent networking platform called optical transport network (OTN), was developed. With the ever-increasing volume of bursty data traffic, a standard for packet-switched ring networks, called resilient packet ring (RPR), was also developed for better bandwidth realization in optical fibers. In this chapter, we first present the SONET/SDH networks and the techniques for supporting the data traffic therein, followed by a description of the basic concepts and salient features of the OTN and RPR networks. (147 words)

Author(s):  
Mário M. Freire ◽  
Paulo P. Monteiro ◽  
Henrique J.A. da Silva ◽  
José Ruela

Recently, Ethernet Passive Optical Networks (EPONs) have received a great amount of interest as a promising cost-effective solution for next-generation high-speed access networks. This is confirmed by the formation of several fora and working groups that contribute to their development, namely the EPON Forum (http://www. ieeecommunities.org/epon), the Ethernet in the First Mile Alliance (http://www.efmalliance.org), and the IEEE 802.3ah working group (http://www.ieee802. org/3/efm), which is responsible for the standardization process. EPONs are a simple, inexpensive, and scalable solution for high-speed residential access capable of delivering voice, high-speed data, and multimedia services to end users (Kramer, Mukherjee, & Maislos, 2003; Kramer & Pesavento, 2002; Lorenz, Rodrigues, & Freire, 2004; McGarry, Maier, & Reisslein, 2004; Pesavento, 2003). An EPON combines the transport of IEEE 802.3 Ethernet frames over a low-cost and broadband point-to-multipoint passive optical fibre infrastructure connecting the optical line terminal (OLT) located at the central office to optical network units (ONUs) usually located at the subscriber premises. In the downstream direction, the EPON behaves as a broadcast and select shared medium, with Ethernet frames transmitted by the OLT reaching every ONU. In the upstream direction, Ethernet frames transmitted by each ONU will only reach the OLT, but an arbitration mechanism is required to avoid collisions. This article provides an overview of EPONs focused several issues: EPON architecture, multipoint control protocol (MPCP), quality of service (QoS), and operations, administration, and maintenance (OAM) capability of EPONs.


2015 ◽  
Vol 36 (4) ◽  
Author(s):  
Pravindra Kumar ◽  
Anand Srivastava

AbstractPassive optical networks based on orthogonal frequency division multiplexing (OFDM-PON) give better performance in high-speed optical access networks. For further improvement in performance, a new architecture of OFDM-PON based on spreading code in electrical domain is proposed and analytically analyzed in this paper. This approach is referred as hybrid multi-carrier code division multiple access-passive optical network (MC-CDMA-PON). Analytical results show that at bit error rate (BER) of 10


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Simarpreet Kaur ◽  
Mahendra Kumar ◽  
Ashu Verma

AbstractWe demonstrated a full duplex hybrid passive optical network and indoor optical wireless system employing coherent optical frequency division multiplexing. To accomplish reliable transmission in passive optical networks integrated visible-light communication (VLC), yellow light-emitting diode and infrared LED is used in downstream and upstream, respectively, for intra building network. In order to support high data rate, pulse-width reduction scheme based on dispersion compensation fiber is incorporated and system successfully covered the distance of 50 km. A data stream at the rate of 30 Gb/s is transmitted for each user out of eight users. VLC-supported users are catered with the bit rate of 1.87 Gb/s over 150 cm and in order to realize a low-cost system, visible and infrared LEDs are used in downlink and uplink, respectively.


2016 ◽  
Vol 3 (1) ◽  
pp. 74 ◽  
Author(s):  
Jack Jia-Sheng Huang ◽  
Yu-Heng Jan ◽  
Jesse Chang ◽  
Yi-Ching Hsu ◽  
Dawei Ren ◽  
...  

High-speed transceivers are receiving great interest due to the demand for huge data traffic and information storage capacities in the Big Data era. Recently, 100 Gigabit Ethernet (100GbE) has become an IEEE standardized data communication protocol. The 100G quad small form-factor pluggable (QSFP) transceiver is one of the key technological enablers in the high-speed optical networks. In this paper, we study the reliability current dependence for the four-lambda QSFP (4x25G) EML devices that are employed in the 100G QSFP transceivers. In order to meet the energy-efficient and environmental requirements, we develop a swift reliability test methodology that can provide fast, accurate reliability assessment to ensure robust long-term field performance. We discuss the acceleration factor and extrapolation for the energy-efficient reliability test.


Author(s):  
Dimitris Kanellopoulos

This chapter presents high-speed networking technologies and standards such as Asynchronous Transfer Mode (ATM), Fast Ethernet, 10 Gigabit Ethernet, Synchronous Optical Network (SONET), Resilient Packet Ring (RPR), Provider Backbone Transport (PBT), Provider Backbone Bridges (PBB), Transport - Multi Protocol Label Switching (T-MPLS) and Optical Transport Network (OTN). It considers the requirements imposed to high-speed networks by multimedia applications and analyses crucial issues of high-speed networking such as bandwidth problems, discarding policies and fast broadcast. Finally, the chapter discusses future trends in high-speed multimedia networking.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikhlesh Kumar Mishra ◽  
Kamal Kishore Upadhyay ◽  
N. K. Shukla

AbstractFor addressing needs of modern day communication needs, new type of networks are required to be evolved to cater the demand of high data rates. Use of survivable elastic-optical-network (EON) with existing passive-optical-networks (PON) may provide the solution for this. The present work focus on employing EON–PON based wave-length-division multiplexing enabled communication system comprises of 2×5 Gbps for downlink and 2×1 Gbps for uplink over a single-mode-fibre of length 100 km. The results are the evaluated via bit-error-rate analyser, q factor and eye diagrams.


2019 ◽  
Vol 41 (1) ◽  
pp. 83-89
Author(s):  
Karamjit Kaur ◽  
Anil Kumar ◽  
Hardeep Singh

Abstract As the optical networks are moving towards transparent networks, the Optical-to-Electrical (O-E) conversion taking place within the link is reduced to minimal. This results into accumulation of physical layer impairments along the light path, thereby degrading the signal quality. Due to enormous data traffic carried by optical links, any link failure or non-recovery to data at the destination end may result in huge loss. To improve the system performance, the optimum placement of regenerators is one of the solutions for the same, where signal regeneration may takes place at certain pre-specified nodes. Three different strategies of regenerator placement are discussed in the present work. The improvement in system performance with this is also presented.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ashutosh Kumar Singh ◽  
Vanya Arun ◽  
Pallavi Singh ◽  
Kamal Kishore Upadhayay

AbstractAs technology advancing day by day, the data rate of optical network is moving towards Tb/s speed. The minimum capacity utilization and survivability are the crucial requirement in such high speed optical networks. This research work presents a new approach to calculate both working and spare capacity with the help of single mathematical programming model named as joint capacity planning model. The working traffic and restored traffic are routed jointly in proposed joint capacity planning model. Therefore the joint capacity planning model required minimum capacity in as compare to other optimization models. To evaluate our model, three example networks are proposed i.e., network A (6 node), network B (8 node) & National science foundation network (14 node). Results of these networks are analyzed and compared. The capacity utilization is optimized by increasing the backup paths of the optical networks. It has also been proved in this manuscript that capacity requirement is dependent on the backup path. The proposed joint capacity model provides fast restoration speed and guaranteed protection for optical network.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Navjot Singh ◽  
Bharat Naresh Bansal

Abstract Wavelength division multiplexed passive optical is promising technique to achieve a high data rate and large number of user. The notable advantages of WDM PON is the combination of reliability, cheap in cost, accessible bandwidth, high security, large optical reach and it can support large number of ONU. There are multiple approaches to achieve high-speed WDN PON using different transmission techniques. In WDM, multiple lasers are required which increase the cost of the system. To reduce cost, an optical multicarrier generation system is proposed. An economical multiple carrier generation with the incorporation of sine generator and Mach–Zehndar modulator is demonstrated. Utmost work of sine generator and dual drive modulator was to attain low cost functioning of passive optical networks. Multicarrier generation was done and replacement of laser carriers with optical multicarrier generator. Carriers were generated with the frequency spacing of 20 GHz and these carriers were used in the passive optical networks with the tone-to-noise ratio of 40 dB, amplitude difference of 1.4 dB. For the transmission of downstream in the PON, differential phase shift keying was employed at 10 Gbps data speed. Transmission distance achieved was 30 km using single-mode fiber and this was a part of optical distribution network. Optical network unit was next part after ODN and signals were received with balanced receiver. Moreover, half signal was given to intensity modulator for the signal re-modulation. Bit error rate of 10–9 was achieved at all channels in the downstream. An upstream of 10 Gbps was accomplished in the passive optical network.


2021 ◽  
Author(s):  
Ulrich H.P. Fischer ◽  
Matthias Haupt ◽  
Peter Kußmann

Optical fiber networks are currently the standard for delivering high bandwidth to customers. Various access technologies to business networks with a very high bandwidth up to access networks for buildings and individual consumers have emerged. In the area of business networks, bandwidths of 10 Gb/s have become established, while in the area of customer bandwidths of 100 Mb/s to 1 Gb/s are used. This chapter will focus on the optical network connections inside buildings. The use of optical glass fibers or/and polymeric optical fibers in different network topologies in connection to high-speed actual WIFI- technologies will be discussed.


Sign in / Sign up

Export Citation Format

Share Document