scholarly journals A Fully-Implantable Wireless System for Human Brain-Machine Interfaces Using Brain Surface Electrodes: W-HERBS

2011 ◽  
Vol E94-B (9) ◽  
pp. 2448-2453 ◽  
Author(s):  
Masayuki HIRATA ◽  
Kojiro MATSUSHITA ◽  
Takafumi SUZUKI ◽  
Takeshi YOSHIDA ◽  
Fumihiro SATO ◽  
...  
2012 ◽  
Vol 26 (3-4) ◽  
pp. 399-408 ◽  
Author(s):  
Masayuki Hirata ◽  
Kojiro Matsushita ◽  
Takufumi Yanagisawa ◽  
Tetsu Goto ◽  
Shayne Morris ◽  
...  

2012 ◽  
Vol 21 (7) ◽  
pp. 541-549
Author(s):  
Masayuki Hirata ◽  
Takufumi Yanagisawa ◽  
Kojiro Matsushita ◽  
Morris Shayne ◽  
Yukiyasu Kamitani ◽  
...  

Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


2013 ◽  
pp. 1535-1548
Author(s):  
Masayuki Hirata ◽  
Takufumi Yanagisawa ◽  
Kojiro Matsushita ◽  
Hisato Sugata ◽  
Yukiyasu Kamitani ◽  
...  

The brain-machine interface (BMI) enables us to control machines and to communicate with others, not with the use of input devices, but through the direct use of brain signals. This chapter describes the integrative approach the authors used to develop a BMI system with brain surface electrodes for real-time robotic arm control in severely disabled people, such as amyotrophic lateral sclerosis patients. This integrative BMI approach includes effective brain signal recording, accurate neural decoding, robust robotic control, a wireless and fully implantable device, and a noninvasive evaluation of surgical indications.


2021 ◽  
Vol 17 (9) ◽  
pp. e1008710
Author(s):  
Kai J. Miller ◽  
Klaus-Robert Müller ◽  
Dora Hermes

Brain networks can be explored by delivering brief pulses of electrical current in one area while measuring voltage responses in other areas. We propose a convergent paradigm to study brain dynamics, focusing on a single brain site to observe the average effect of stimulating each of many other brain sites. Viewed in this manner, visually-apparent motifs in the temporal response shape emerge from adjacent stimulation sites. This work constructs and illustrates a data-driven approach to determine characteristic spatiotemporal structure in these response shapes, summarized by a set of unique “basis profile curves” (BPCs). Each BPC may be mapped back to underlying anatomy in a natural way, quantifying projection strength from each stimulation site using simple metrics. Our technique is demonstrated for an array of implanted brain surface electrodes in a human patient. This framework enables straightforward interpretation of single-pulse brain stimulation data, and can be applied generically to explore the diverse milieu of interactions that comprise the connectome.


Sign in / Sign up

Export Citation Format

Share Document