Acute Constraints in Straight-Line Drawings of Planar Graphs

Author(s):  
Akane SETO ◽  
Aleksandar SHURBEVSKI ◽  
Hiroshi NAGAMOCHI ◽  
Peter EADES
Algorithmica ◽  
2021 ◽  
Author(s):  
Guido Brückner ◽  
Nadine Krisam ◽  
Tamara Mchedlidze

AbstractWe introduce and study level-planar straight-line drawings with a fixed number $$\lambda $$ λ of slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give an $$O(n \log ^2 n / \log \log n)$$ O ( n log 2 n / log log n ) -time algorithm that either finds such a drawing or determines that no such drawing exists. Moreover, we consider the partial drawing extension problem, where we seek to extend an immutable drawing of a subgraph to a drawing of the whole graph, and the simultaneous drawing problem, which asks about the existence of drawings of two graphs whose restrictions to their shared subgraph coincide. We present $$O(n^{4/3} \log n)$$ O ( n 4 / 3 log n ) -time and $$O(\lambda n^{10/3} \log n)$$ O ( λ n 10 / 3 log n ) -time algorithms for these respective problems on proper level-planar graphs. We complement these positive results by showing that testing whether non-proper level graphs admit level-planar drawings with $$\lambda $$ λ slopes is -hard even in restricted cases.


2016 ◽  
Vol 60 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Emilio Di Giacomo ◽  
Walter Didimo ◽  
Giuseppe Liotta ◽  
Fabrizio Montecchiani

2017 ◽  
Vol 27 (01n02) ◽  
pp. 121-158 ◽  
Author(s):  
Martin Nöllenburg ◽  
Roman Prutkin ◽  
Ignaz Rutter

A greedily routable region (GRR) is a closed subset of [Formula: see text], in which any destination point can be reached from any starting point by always moving in the direction with maximum reduction of the distance to the destination in each point of the path. Recently, Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor networks based on decomposing the network area into a small number of interior-disjoint GRRs. They showed that minimum decomposition is NP-hard for polygonal regions with holes. We consider minimum GRR decomposition for plane straight-line drawings of graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has become a popular research topic in graph drawing. We show that minimum decomposition is still NP-hard for graphs with cycles and even for trees, but can be solved optimally for trees in polynomial time, if we allow only certain types of GRR contacts. Additionally, we give a 2-approximation for simple polygons, if a given triangulation has to be respected.


2009 ◽  
Vol 13 (2) ◽  
pp. 153-177 ◽  
Author(s):  
Md. Rezaul Karim ◽  
Md. Saidur Rahman
Keyword(s):  

2013 ◽  
Vol 23 (04n05) ◽  
pp. 357-395 ◽  
Author(s):  
THERESE BIEDL ◽  
MARTIN VATSHELLE

In this paper, we study the point-set embeddability problem, i.e., given a planar graph and a set of points, is there a mapping of the vertices to the points such that the resulting straight-line drawing is planar? It was known that this problem is NP-hard if the embedding can be chosen, but becomes polynomial for triangulated graphs of treewidth 3. We show here that in fact it can be answered for all planar graphs with a fixed combinatorial embedding that have constant treewidth and constant face-degree. We prove that as soon as one of the conditions is dropped (i.e., either the treewidth is unbounded or some faces have large degrees), point-set embeddability with a fixed embedding becomes NP-hard. The NP-hardness holds even for a 3-connected planar graph with constant treewidth, triangulated planar graphs, or 2-connected outer-planar graphs. These results also show that the convex point-set embeddability problem (where faces must be convex) is NP-hard, but we prove that it becomes polynomial if the graph has bounded treewidth and bounded maximum degree.


Sign in / Sign up

Export Citation Format

Share Document