scholarly journals On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area

2009 ◽  
Vol 13 (2) ◽  
pp. 153-177 ◽  
Author(s):  
Md. Rezaul Karim ◽  
Md. Saidur Rahman
Keyword(s):  
Author(s):  
Akane SETO ◽  
Aleksandar SHURBEVSKI ◽  
Hiroshi NAGAMOCHI ◽  
Peter EADES

2013 ◽  
Vol 23 (04n05) ◽  
pp. 357-395 ◽  
Author(s):  
THERESE BIEDL ◽  
MARTIN VATSHELLE

In this paper, we study the point-set embeddability problem, i.e., given a planar graph and a set of points, is there a mapping of the vertices to the points such that the resulting straight-line drawing is planar? It was known that this problem is NP-hard if the embedding can be chosen, but becomes polynomial for triangulated graphs of treewidth 3. We show here that in fact it can be answered for all planar graphs with a fixed combinatorial embedding that have constant treewidth and constant face-degree. We prove that as soon as one of the conditions is dropped (i.e., either the treewidth is unbounded or some faces have large degrees), point-set embeddability with a fixed embedding becomes NP-hard. The NP-hardness holds even for a 3-connected planar graph with constant treewidth, triangulated planar graphs, or 2-connected outer-planar graphs. These results also show that the convex point-set embeddability problem (where faces must be convex) is NP-hard, but we prove that it becomes polynomial if the graph has bounded treewidth and bounded maximum degree.


10.37236/557 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Micha Sharir ◽  
Adam Sheffer

We study the maximal number of triangulations that a planar set of $n$ points can have, and show that it is at most $30^n$. This new bound is achieved by a careful optimization of the charging scheme of Sharir and Welzl (2006), which has led to the previous best upper bound of $43^n$ for the problem. Moreover, this new bound is useful for bounding the number of other types of planar (i.e., crossing-free) straight-line graphs on a given point set. Specifically, it can be used to derive new upper bounds for the number of planar graphs ($207.84^n$), spanning cycles ($O(68.67^n)$), spanning trees ($O(146.69^n)$), and cycle-free graphs ($O(164.17^n)$).


Algorithmica ◽  
2021 ◽  
Author(s):  
Guido Brückner ◽  
Nadine Krisam ◽  
Tamara Mchedlidze

AbstractWe introduce and study level-planar straight-line drawings with a fixed number $$\lambda $$ λ of slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give an $$O(n \log ^2 n / \log \log n)$$ O ( n log 2 n / log log n ) -time algorithm that either finds such a drawing or determines that no such drawing exists. Moreover, we consider the partial drawing extension problem, where we seek to extend an immutable drawing of a subgraph to a drawing of the whole graph, and the simultaneous drawing problem, which asks about the existence of drawings of two graphs whose restrictions to their shared subgraph coincide. We present $$O(n^{4/3} \log n)$$ O ( n 4 / 3 log n ) -time and $$O(\lambda n^{10/3} \log n)$$ O ( λ n 10 / 3 log n ) -time algorithms for these respective problems on proper level-planar graphs. We complement these positive results by showing that testing whether non-proper level graphs admit level-planar drawings with $$\lambda $$ λ slopes is -hard even in restricted cases.


2019 ◽  
Vol 29 (08) ◽  
pp. 1431-1449
Author(s):  
John Rhodes ◽  
Anne Schilling

We show that the stationary distribution of a finite Markov chain can be expressed as the sum of certain normal distributions. These normal distributions are associated to planar graphs consisting of a straight line with attached loops. The loops touch only at one vertex either of the straight line or of another attached loop. Our analysis is based on our previous work, which derives the stationary distribution of a finite Markov chain using semaphore codes on the Karnofsky–Rhodes and McCammond expansion of the right Cayley graph of the finite semigroup underlying the Markov chain.


2016 ◽  
Vol 60 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Emilio Di Giacomo ◽  
Walter Didimo ◽  
Giuseppe Liotta ◽  
Fabrizio Montecchiani

1997 ◽  
Vol 07 (03) ◽  
pp. 211-223 ◽  
Author(s):  
Marek Chrobak ◽  
Goos Kant

We consider the problem of embedding the vertices of a plane graph into a small (polynomial size) grid in the plane in such a way that the edges are straight, nonintersecting line segments and faces are convex polygons. We present a linear-time algorithm which, given an n-vertex 3-connected plane G (with n ≥ 3), finds such a straight-line convex embedding of G into a (n - 2) × (n - 2) grid.


Sign in / Sign up

Export Citation Format

Share Document