A Discrete Particle Swarm Optimizer for Multi-Solution Problems

Author(s):  
Masafumi KUBOTA ◽  
Toshimichi SAITO
2012 ◽  
Vol 433-440 ◽  
pp. 4526-4529 ◽  
Author(s):  
Hua Li Wu ◽  
Jin Hua Wu ◽  
Ai Li Liu

PSO has been widely used in continuous optimization problems, but in discrete domain the research and application is very little. By redefining the position and speed of particles and related operations, the discrete particle swarm algorithm can be constructed. Due to the weak capacity of local search of PSO and be easy to constringe the local optimum, it is combined with simulated annealing and the hybrid discrete PSO is constructed using the characteristics that simulated annealing can accept some ungraded solution under the control of certain probability,finally the algorithm is applied to solving the traveling salesman problem successfully. The simulation results show that the hybrid discrete PSO can get better optimization effect, which validates the effectiveness of the method.


2010 ◽  
Vol 31 (11) ◽  
pp. 1216-1225 ◽  
Author(s):  
Liang Feng ◽  
Ming-Hui Qiu ◽  
Yu-Xuan Wang ◽  
Qiao-Liang Xiang ◽  
Yin-Fei Yang ◽  
...  

2020 ◽  
pp. 147592172097970
Author(s):  
Liangliang Cheng ◽  
Vahid Yaghoubi ◽  
Wim Van Paepegem ◽  
Mathias Kersemans

The Mahalanobis–Taguchi system is considered as a promising and powerful tool for handling binary classification cases. Though, the Mahalanobis–Taguchi system has several restrictions in screening useful features and determining the decision boundary in an optimal manner. In this article, an integrated Mahalanobis classification system is proposed which builds on the concept of Mahalanobis distance and its space. The integrated Mahalanobis classification system integrates the decision boundary searching process, based on particle swarm optimizer, directly into the feature selection phase for constructing the Mahalanobis distance space. This integration (a) avoids the need for user-dependent input parameters and (b) improves the classification performance. For the feature selection phase, both the use of binary particle swarm optimizer and binary gravitational search algorithm is investigated. To deal with possible overfitting problems in case of sparse data sets, k-fold cross-validation is considered. The integrated Mahalanobis classification system procedure is benchmarked with the classical Mahalanobis–Taguchi system as well as the recently proposed two-stage Mahalanobis classification system in terms of classification performance. Results are presented on both an experimental case study of complex-shaped metallic turbine blades with various damage types and a synthetic case study of cylindrical dogbone samples with creep and microstructural damage. The results indicate that the proposed integrated Mahalanobis classification system shows good and robust classification performance.


Sign in / Sign up

Export Citation Format

Share Document