scholarly journals Sparse Recovery Using Sparse Sensing Matrix Based Finite Field Optimization in Network Coding

2017 ◽  
Vol E100.D (2) ◽  
pp. 375-378 ◽  
Author(s):  
Ganzorig GANKHUYAG ◽  
Eungi HONG ◽  
Yoonsik CHOE
2021 ◽  
Author(s):  
Shah Mahdi Hasan ◽  
Kaushik Mahata ◽  
Md Mashud Hyder

Grant-Free Non Orthogonal Multiple Access (NOMA) offers promising solutions to realize uplink (UL) massive Machine Type Communication (mMTC) using limited spectrum resources, while reducing signalling overhead. Because of the sparse, sporadic activities exhibited by the user equipments (UE), the active user detection (AUD) problem is often formulated as a compressive sensing problem. In line of that, greedy sparse recovery algorithms are spearheading the development of compressed sensing based multi-user detectors (CS-MUD). However, for a given number of resources, the performance of CS-MUD algorithms are fundamentally limited at higher overloading of NOMA. To circumvent this issue, in this work, we propose a two-stage hierarchical multi-user detection framework, where the UEs are randomly assigned to some pre-defined clusters. The active UEs split their data transmission frame into two phases. In the first phase an UE uses the sinusoidal spreading sequence (SS) of its cluster. In the second phase the UE uses its own unique random SS. At phase 1 of detection, the active clusters are detected, and a reduced sensing matrix is constructed. This matrix is used in Phase 2 to recover the active UE indices using some sparse recovery algorithm. Numerical investigations validate the efficacy of the proposed algorithm in highly overloaded scenarios.


2020 ◽  
Vol 68 ◽  
pp. 1439-1454
Author(s):  
Arya Bangun ◽  
Arash Behboodi ◽  
Rudolf Mathar

2019 ◽  
Vol 65 (3) ◽  
pp. 1614-1625
Author(s):  
Simon R. Blackburn ◽  
Jessica Claridge
Keyword(s):  

2019 ◽  
Vol 105 (6) ◽  
pp. 1000-1014
Author(s):  
Guoli Ping ◽  
Zhigang Chu ◽  
Yang Yang

This study examines a compressive spherical beamforming (CSB) method, using a rigid spherical microphone array to localize and quantify the acoustic contribution of sources. The method relies on the array signal model in the spherical harmonics domain that can be represented as a spatially sparse problem. This makes it possible to use compressive sensing to solve an underdetermined problem via promoting sparsity. The estimation of the angular position of sources with respect to the microphone array, as well as the three-dimensional localization over a volume are investigated. Several sparse recovery algorithms [orthogonal matching pursuit (OMP), generalized OMP, ϱ1-norm minimization, and reweighted ϱ1-norm minimization] are examined for this purpose. The numerical and experimental results indicate that sparse recovery methods outperform conventional spherical harmonics beamforming. Reweighted ϱ1-norm has good adaptability to noise, improving the robustness of CSB. The method can successfully localize the angular position of sources, and quantify their relative pressure contribution. The method is promising to localize sources in a three-dimensional domain of interest. However, the three-dimensional localization is more sensitive to noise, source distance, and properties of the sensing matrix than the two-dimensional localization.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 605
Author(s):  
Elad Romanov ◽  
Or Ordentlich

Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix A and a recovery algorithm, such that the sparse binary vector x can be recovered reliably from the measurements y=Ax+σz, where z is additive white Gaussian noise. We propose to design A as a parity check matrix of a low-density parity-check code (LDPC) and to recover x from the measurements y using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of A. The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.


2021 ◽  
Author(s):  
Shah Mahdi Hasan ◽  
Kaushik Mahata ◽  
Md Mashud Hyder

Grant-Free Non Orthogonal Multiple Access (NOMA) offers promising solutions to realize uplink (UL) massive Machine Type Communication (mMTC) using limited spectrum resources, while reducing signalling overhead. Because of the sparse, sporadic activities exhibited by the user equipments (UE), the active user detection (AUD) problem is often formulated as a compressive sensing problem. In line of that, greedy sparse recovery algorithms are spearheading the development of compressed sensing based multi-user detectors (CS-MUD). However, for a given number of resources, the performance of CS-MUD algorithms are fundamentally limited at higher overloading of NOMA. To circumvent this issue, in this work, we propose a two-stage hierarchical multi-user detection framework, where the UEs are randomly assigned to some pre-defined clusters. The active UEs split their data transmission frame into two phases. In the first phase an UE uses the sinusoidal spreading sequence (SS) of its cluster. In the second phase the UE uses its own unique random SS. At phase 1 of detection, the active clusters are detected, and a reduced sensing matrix is constructed. This matrix is used in Phase 2 to recover the active UE indices using some sparse recovery algorithm. Numerical investigations validate the efficacy of the proposed algorithm in highly overloaded scenarios.


Sign in / Sign up

Export Citation Format

Share Document