scholarly journals Pulmonary 64-MDCT angiography with 50 mL of iodinated contrast material in an unselected patient population: a feasible protocol

2016 ◽  
Vol 49 (2) ◽  
pp. 75-78 ◽  
Author(s):  
Henrique Simão Trad ◽  
Gustavo Santos Boasquevisque ◽  
Tiago Rangon Giacometti ◽  
Catherine Yang Trad ◽  
Orlando Salomão Zoghbi Neto ◽  
...  

Abstract Objective: To propose a protocol for pulmonary angiography using 64-slice multidetector computed tomography (64-MDCT) with 50 mL of iodinated contrast material, in an unselected patient population, as well as to evaluate vascular enhancement and image quality. Materials and Methods: We evaluated 29 patients (22-86 years of age). The body mass index ranged from 19.0 kg/m2 to 41.8 kg/m2. Patients underwent pulmonary CT angiography in a 64-MDCT scanner, receiving 50 mL of iodinated contrast material via venous access at a rate of 4.5 mL/s. Bolus tracking was applied in the superior vena cava. Two experienced radiologists assessed image quality and vascular enhancement. Results: The mean density was 382 Hounsfield units (HU) for the pulmonary trunk; 379 and 377 HU for the right and left main pulmonary arteries, respectively; and 346 and 364 HU for the right and left inferior pulmonary arteries, respectively. In all patients, subsegmental arteries were analyzed. There were streak artifacts from contrast material in the superior vena cava in all patients. However, those artifacts did not impair the image analysis. Conclusion: Our findings suggest that pulmonary angiography using 64-MDCT with 50 mL of iodinated contrast can produce high quality images in unselected patient populations.

Author(s):  
Elizabeth Mack ◽  
Alexandrina Untaroiu

Currently, the surgical procedure followed by the majority of cardiac surgeons to address right ventricular dysfunction is the Fontan procedure, which connects the superior and inferior vena cava directly to the left and right pulmonary arteries bypassing the right atrium. However, this is not the most efficient configuration from a hemodynamics perspective. The goal of this study is to develop a patient-specific 4-way connector to bypass the dysfunctional right ventricle and augment the pulmonary circulation. The 4-way connector is intended to channel the blood flow from the inferior and superior vena cava directly to the right and left pulmonary arteries. By creating a connector with proper hemodynamic characteristics, one can control the jet flow interactions between the inferior and superior vena cava and streamline the flow towards the right and left pulmonary arteries. In this study the focus is on creating a system that can identify the optimal configuration for the 4-way connector for patients from 0–20 years of age. A platform is created in ANSYS that utilizes the DOE function to minimize power-loss and blood damage propensity in the connector based on junction geometries. A CFD model is created to simulate the blood flow through the connector. Then the geometry of the bypass connector is parameterized for DOE process. The selected design parameters include inlet and outlet diameters, radius at the intersection, and length of the connector pathways. The chosen range for each geometric parameter is based on the relative size of the patient’s arteries found in the literature. It was confirmed that as the patient’s age and artery size change, the optimal size and shape of the connector also changes. However, the corner radius did not decrease at the same rate as the opening diameters. This means that creating different sized connectors is not just a matter of scaling the original connector to match the desired opening diameter. However, it was found that power losses within the connector decrease and average and maximum blood traversal time through the connector increased for increasing opening radius. This information could be used to create a more specific relationship between the opening radius and the flow characteristics. So in order to create patient specific connectors, either a new more complicated trend needs to be found or an optimization program would need to be run on each patient’s specific geometry when they need a new connector.


Author(s):  
Reza H. Khiabani ◽  
Maria Restrepo ◽  
Elaine Tang ◽  
Diane De Zélicourt ◽  
Mark Fogel ◽  
...  

Single Ventricle Heart Defects (SVHD) are present in 2 per 1000 live births in the US. SVHD are characterized by cyanotic mixing between the de-oxygenated blood from the systemic circulation return and the oxygenated blood from the pulmonary arteries. Palliative surgical repairs (Fontan procedure) are performed to bypass the right ventricle in these patients. In current practice, the surgical interventions commonly result in the total cavopulmonary connection (TCPC). In this configuration the systemic venous returns (inferior vena cava, IVC, and superior vena cava, SVC) are directly routed to the right and left pulmonary arteries (RPA and LPA), bypassing the right heart. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Pulsation of the inlet venous flow during a cardiac cycle results in complex and unsteady flow patterns in the TCPC. Although various degrees of pulsatility have been observed in vivo, non-pulsatile (time-averaged) flow boundary conditions have traditionally been assumed in modeling TCPC hemodynamics, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations were performed to predict TCPC hemodynamics with both pulsatile and non-pulsatile boundary conditions and to investigate the accuracy of applying non-pulsatile boundary conditions. Flow structures, energy dissipation rate and pressure drop were compared under rest and estimated exercise conditions. The results show that TCPC hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there exists a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence is significant.


Author(s):  
Reza H. Khiabani ◽  
Sulisay Phonekeo ◽  
Harish Srinimukesh ◽  
Elaine Tang ◽  
Mark Fogel ◽  
...  

Single Ventricle Heart Defects (SVHD) are present in 2 per 1000 live births in the US. SVHD are characterized by cyanotic mixing between the de-oxygenated blood from the systemic circulation return and the oxygenated blood from the pulmonary arteries. In the current practice, surgical interventions on SVHD patients commonly result in the total cavopulmonary connection (TCPC) [1]. In this configuration the systemic venous returns (inferior vena cava, IVC, and superior vena cava, SVC) are directly routed to the right and left pulmonary arteries (RPA and LPA), bypassing the right heart. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Pulsation of the inlet venous flow during a cardiac cycle and wall motion may result in complex and unsteady flow patterns in the TCPC. Although vessel wall motion and different degrees of pulsatility have been observed in vivo, non-pulsatile (time-averaged) flow boundary conditions and rigid walls have traditionally been assumed in estimating the TCPC hemodynamic parameters (such as energy loss). Recent studies have shown that these assumptions may result in significant inaccuracies in modeling TCPC hemodynamics [2, 3].


Author(s):  
Elaine Tang ◽  
Doff B. McElhinney ◽  
Ajit P. Yoganathan

2 per 1000 children in the US are born with functionally single ventricle (SV) heart defects. To restore the separate systemic and pulmonary circulations, a Total Cavopulmonary Connection (TCPC) is carried out through a series of surgical steps, which result in the direct connection of the superior vena cava (SVC) and inferior vena cava (IVC) to the pulmonary arteries without an intervening pulmonary ventricle. One way to complete the TCPC is by placing a synthetic patch in the right atrium, forming an intracardiac lateral tunnel (LT) as the final step. As patients grow, some LT pathways become stenosed. The stenosis can impose extra resistance to flow in addition to the TCPC in the SV circulation. One method of treating LT stenosis is by placement of an intravascular stent.


2021 ◽  
pp. 152660282198933
Author(s):  
Pablo V. Uceda ◽  
Julio Peralta Rodriguez ◽  
Hernán Vela ◽  
Adelina Lozano Miranda ◽  
Luis Vega Salvatierra ◽  
...  

The health care system in Peru treats 15,000 dialysis patients annually. Approximately 45% of patients receive therapy using catheters. The incidence of catheter-induced superior vena cava (SVC) occlusion is increasing along with its associated significant morbidity and vascular access dysfunction. One of the unusual manifestations of this complication is bleeding “downhill” esophageal varices caused by reversal of blood flow through esophageal veins around the obstruction to the right atrium. Herein is presented the case of an 18-year-old woman on hemodialysis complicated by SVC occlusion and bleeding esophageal varices who underwent successful endovascular recanalization of the SVC. Bleeding from “downhill” esophageal varices should be considered in the differential diagnosis of dialysis patients exposed to central venous catheters. Aggressive endovascular treatment of SVC occlusion is recommended to preserve upper extremity access function and prevent bleeding from this complication.


Author(s):  
Reina Tonegawa-Kuji ◽  
Kenichiro Yamagata ◽  
Kengo Kusano

Abstract Background  Cough-induced atrial tachycardia (AT) is extremely rare and its electrical origin remains largely unknown. Atrial tachycardias triggered by pharyngeal stimulation, such as swallowing or speech, appears to be more common and the majority of them originate from the superior vena cava or right superior pulmonary vein (PV). Only one case of swallow-triggered AT with right inferior pulmonary vein (RIPV) origin has been reported to date. Case summary  We present a case of a 41-year-old man with recurring episodes of AT in the daytime. He underwent electrophysiology study without sedation. Atrial tachycardia was not observed when the patient entered the examination room and could not be induced with conventional induction procedures. By having the patient cough periodically on purpose, transient AT with P-wave morphology similar to the clinical AT was consistently induced. Activation mapping of the AT revealed a centrifugal pattern with the earliest activity localized inside the RIPV. After successful radiofrequency isolation of the right PV, AT was no longer inducible. Discussion  In the rare case of cough-induced AT originating from the RIPV, the proximity of the inferior right ganglionated plexi (GP) suggests the role of GP in triggering tachycardia. This is the first report that demonstrates voluntary cough was used to induce AT. In such cases that induction of AT is difficult using conventional methods, having the patient cough may be an effective induction method that is easy to attempt.


2021 ◽  
pp. 1-3
Author(s):  
Rajashekar Rangappa Mudaraddi ◽  
Hany Fawzi Greiss ◽  
Navin Kumar Manickam

Central venous cannulation is the most common procedure performed in perioperative setting and intensive care unit. Many case reports reported unusual positioning of central line catheters. Here, we would like to report a case of central line path in persistent left superior vena cava, a rare entity with a course similar to the right internal jugular central line. Preoperative computed tomography chest showed duplex superior vena cava which was not reported.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
I Marco Clement ◽  
R Eiros ◽  
R Dalmau ◽  
T Lopez ◽  
G Guzman ◽  
...  

Abstract Introduction The diagnosis of sinus venosus atrial septal defect (SVASD) is complex and requires special imaging. Surgery is the conventional treatment; however, transcatheter repair may become an attractive option. Case report A 60 year-old woman was admitted to the cardiology department with several episodes of paroxysmal atrial flutter, atrial fibrillation and atrioventricular nodal reentrant tachycardia. She reported a 10-year history of occasional palpitations which had not been studied. A transthoracic echocardiography revealed severe right ventricle dilatation and moderate dysfunction. Right volume overload appeared to be secondary to a superior SVASD with partial anomalous pulmonary venous drainage. A transesophageal echocardiography confirmed the diagnosis revealing a large SVASD of 16x12 mm (Figure A) with left-right shunt (Qp/Qs 2,2) and two right pulmonary veins draining into the right superior vena cava. Additionally, it demonstrated coronary sinus dilatation secondary to persistent left superior vena cava. CMR and cardiac CT showed right superior and middle pulmonary veins draining into the right superior vena cava 18 mm above the septal defect (Figures B and C). After discussion in clinical session, a percutaneous approach was planned to correct the septal defect and anomalous pulmonary drainage. For this purpose, anatomical data obtained from CMR and CT was needed to plan the procedure. During the intervention two stents graft were deployed in the right superior vena cava. The distal stent was flared at the septal defect level so as to occlude it while redirecting the anomalous pulmonary venous flow to the left atrium (Figure D). Control CT confirmed the complete occlusion of the SVASD without residual communication from pulmonary veins to the right superior vena cava or the right atrium (Figure E). Anomalous right superior and middle pulmonary veins drained into the left atrium below the stents. Transthoracic echocardiographies showed progressive reduction of right atrium and ventricle dilatation. The patient also underwent successful ablation of atrial flutter and intranodal tachycardia. She is currently asymptomatic, without dyspnea or arrhythmic recurrences. Conclusions In this case, multimodality imaging played a key role in every stage of the clinical process. First, it provided the diagnosis and enabled an accurate understanding of the patient’s anatomy, particularly of the anomalous pulmonary venous connections. Secondly, it allowed a transcatheter approach by supplying essential information to guide the procedure. Finally, it assessed the effectiveness of the intervention and the improvement in cardiac hemodynamics during follow-up. Abstract P649 Figure.


Sign in / Sign up

Export Citation Format

Share Document