scholarly journals Iterative calculation of local head loss coefficient of emitters in lateral lines

Author(s):  
Giuliani Prado ◽  
Rafael R. Bruscagin ◽  
Adriano C. Tinos ◽  
Edmilson C. Bortoletto ◽  
Denise Mahl

ABSTRACT This study aimed to iteratively set the local head loss coefficient of the Naan® micro-sprinkler, model 7110 Hadar, installed in a lateral irrigation line. To evaluate the total head loss along the lateral line, tests were performed using a rigid PVC pipe with an inner diameter of 15.8 mm, 12 m in length, and 24 micro-sprinklers inserted along the pipe, regularly spaced 0.5 m. In the tests carried out for four micro-sprinkler nozzle diameters (0.9, 1.0, 1.1, and 1.2 mm) and six inlet pressure head values (5, 10, 15, 20, 25, and 30 m) in the line, the pressure head difference between inlet and outlet in the pipe and the discharge of each emitter along the pipe were measured. The head loss computation was performed by the step-by-step procedure, starting from the downstream end to the upstream end of the line; since varying the local head loss coefficient values iteratively, the total head loss measured in the tests was equal to the calculated. For the different working conditions of the inlet pressure head and the micro-sprinkler nozzle diameter, the local head loss coefficient had values from 0.051 to 0.169. Relating the discharge values measured and estimated along the lateral line, the confidence coefficient of 0.9991 was verified, and the calculation procedure was considered optimal.

2016 ◽  
Vol 49 (6) ◽  
pp. 062009 ◽  
Author(s):  
Nicolas J. Adam ◽  
Giovanni De Cesare ◽  
Anton J. Schleiss ◽  
Sylvain Richard ◽  
Cécile Muench-Alligné

2000 ◽  
Vol 27 (6) ◽  
pp. 1306-1310 ◽  
Author(s):  
Minnan Liu ◽  
David Z Zhu

In the design of diversion tunnels, culverts, and pressurized conduits, the outlet head-loss coefficient is generally assumed to be 1.0. However, the head loss can be reduced if a transitional expansion is added to the conduit outlet. This paper studies the reduction in the outlet loss coefficient by using the wingwalls at the tunnel outlet. The best wingwall diffusion angle is found to be 8°, which gives an outlet loss coefficient of 0.62-0.81 with a wingwall length of 2D, with D being the height of the tunnel. A wingwall length of 2D is also found to be suitable, as further increase in length only reduces the outlet loss coefficient marginally. An illustrating example shows that by adding wingwalls of 8° and a length of 2D the headwater level is decreased by 9-22% compared to the case without wingwalls for the same discharge.Key words: outlet, loss coefficient, diversion tunnel, wingwall, diffusion angle.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Yang Yu ◽  
Lixin Xu ◽  
Liang Zhang

A tuned liquid column damper (TLCD) is a more effective form of passive control for structural vibration suppression and may be promising for floating platform applications. To achieve good damping effects for a TLCD under actual working conditions, factors that influence the damping characteristics need to be identified. In this study, the relationships between head loss coefficients and other factors such as the total length of the liquid column, opening ratio, Reynolds number, Kc number, and horizontal length of the liquid column were experimentally investigated. By using a hydraulic vibration table, a vibration test system with large-amplitude motion simulation, low-frequency performance, and large stroke force (displacement) control is devised with a simple operation and at low cost. Based on the experimental method of uniform design, a series of experimental studies were conducted to determine the quantitative relationships between the head loss coefficient and other factors. In addition, regression analyses indicated the importance of each factor affecting the head loss coefficient. A rapid design strategy of TLCD head loss coefficient is proposed. This strategy can help people conveniently and efficiently adjust the head loss coefficient to a specified value to effectively suppress vibration.


Author(s):  
Luiz Antonio de Andrade ◽  
João Carlos Cury Saad ◽  
Bruno Marcos Nunes Cosmo ◽  
João Victor Costa ◽  
Willian Aparecido Leoti Zanetti

A challenge for the design of drip irrigation systems with non-pressure compensated emitters is to increase the maximum length of the lateral lines without significantly reducing water application uniformity. This work evaluated the effect of the flow-rate variation and the local head loss in the maximum length of drip tape with a non-pressure compensated flat emitter. The tests were carried out in a laboratory, using a collapsible drip tape non-pressure compensated in three 50-meter segments. The production line was configured to generate drip tapes without insertion of emitters and with closed emitters (0.30 m spacing). The experimental local head loss was compared with the Darcy-Weisbach equation's estimates using the Blasius friction factor. In the sequence, simulations were generated for the flow-rate variations of 10 and 20% for the emitter spacings of 0.30, 0.40, and 0.50m. The results showed that the local head loss had little influence on the lateral line's maximum length, generating variations of 2.5% on average. However, increasing the allowable flow rate variation from 10 to 20% resulted in a 34% increase in the lateral line maximum length. Also, the reduction in uniformity coefficients was less than 5%, enabling the indexes to remain above 90%. The adoption of higher flow rate variation values allowed gains in the lateral line length with a small decrease in uniformity, making it an alternative to reduce design and operational costs.


Sign in / Sign up

Export Citation Format

Share Document