head loss coefficient
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 2)

Author(s):  
Giuliani Prado ◽  
Rafael R. Bruscagin ◽  
Adriano C. Tinos ◽  
Edmilson C. Bortoletto ◽  
Denise Mahl

ABSTRACT This study aimed to iteratively set the local head loss coefficient of the Naan® micro-sprinkler, model 7110 Hadar, installed in a lateral irrigation line. To evaluate the total head loss along the lateral line, tests were performed using a rigid PVC pipe with an inner diameter of 15.8 mm, 12 m in length, and 24 micro-sprinklers inserted along the pipe, regularly spaced 0.5 m. In the tests carried out for four micro-sprinkler nozzle diameters (0.9, 1.0, 1.1, and 1.2 mm) and six inlet pressure head values (5, 10, 15, 20, 25, and 30 m) in the line, the pressure head difference between inlet and outlet in the pipe and the discharge of each emitter along the pipe were measured. The head loss computation was performed by the step-by-step procedure, starting from the downstream end to the upstream end of the line; since varying the local head loss coefficient values iteratively, the total head loss measured in the tests was equal to the calculated. For the different working conditions of the inlet pressure head and the micro-sprinkler nozzle diameter, the local head loss coefficient had values from 0.051 to 0.169. Relating the discharge values measured and estimated along the lateral line, the confidence coefficient of 0.9991 was verified, and the calculation procedure was considered optimal.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 165
Author(s):  
Gaetano Crispino ◽  
Pasquale Contestabile ◽  
Diego Vicinanza ◽  
Corrado Gisonni

Vortex drop shafts are special manholes designed to link sewer channels at different elevations. Significant energy head dissipation occurs across these structures, mainly due to vertical shaft wall friction and turbulence in the dissipation chamber at the toe of the shaft. In the present study two aspects, sometimes neglected in the standard hydraulic design, are considered, namely the energy head dissipation efficiency and the maximum pressure force in the dissipation chamber. Different physical model results derived from the pertinent literature are analyzed. It is demonstrated that the energy head dissipation efficiency is mostly related to the flow impact and turbulence occurring in the chamber. Similarly to the drop manholes, a relation derived from a simple theoretical model is proposed for the estimation of the energy head loss coefficient. The analysis of the pressures measured on the chamber bottom allows to provide a useful equation to estimate the pressure peak in the chamber as a function of the approach flow energy head.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3440
Author(s):  
Mona Seyfeddine ◽  
Samuel Vorlet ◽  
Nicolas Adam ◽  
Giovanni De Cesare

In order to increase the installed capacity, the refurbishment of Gondo high-head power plant required a modification of the existing surge tank by installing a throttle at its entrance. In a previous study, the geometry of this throttle was optimized by physical modeling to achieve the target loss coefficients as identified by a transient 1D numerical analysis. This study complements previous analyses by means of 3D numerical modeling using the commercial software ANSYS-CFX 19 R1. Results show that: (i) a 3D computational fluid dynamics (CFD) model predicts sufficiently accurate local head loss coefficients that agree closely with the findings of the physical model; (ii) in contrast to a standard surge tank, the presence of an internal gallery in the surge tank proved to be of insignificant effect on a surge tank equipped with a throttle, as the variations in the section of the tank cause negligible local losses compared to the ones induced by the throttle; (iii) CFD investigations of transient flow regimes revealed that the head loss coefficient of the throttle only varies for flow ratios below 20% of the total flow in the system, without significantly affecting the conclusions of the 1D transient analysis with respect to minimum and maximum water level in the surge tank as well as pressure peaks below the surge tank. This study highlights the importance of examining the characteristics of a hydraulic system from a holistic approach involving hybrid modeling (1D, 3D numerical and physical) backed by calibration as well as validation with in-situ measurements. This results in a more rapid and economic design of throttled surge tanks that makes full use of the advantages associated with each modeling strategy.


Author(s):  
Jiazhen Li ◽  
Kailin Yang ◽  
Xinlei Guo ◽  
Wei Huang ◽  
Tao Wang ◽  
...  

Hydraulic ram pump is an automatic water-lifting machinery, which converts the low-head potential energy of a large volume of water into a small high-head potential energy through the periodic open and close of waste valve and delivery valve. The pump would run inefficiently or even fail if the valves are poorly designed. In this paper, a novel and reliable waste valve of lift-check-valve structure has been developed. The sealing mode integrating soft and rigid sealing rings, the equation for the valve disc thickness and the equation for the flow passage in terms of the diffuser length, the larger radius and the smaller radius, are presented to guide future design. Major factors influencing the hydraulic performance, including the flow passage, valve opening and valve clack mass, are discussed with model experiments and numerical simulations. The optimized configuration for a 100-mm hydraulic ram pump includes a curved diffuser, 25–30-mm valve opening and 1.2-kg valve clack mass. The proposed waste valve can decrease the head loss coefficient of the system by 45%, achieve relatively higher working efficiency, and lift the largest water when the delivery head is lower than 30 m.


2019 ◽  
Vol 20 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Ran Tian ◽  
Jianhua Wu ◽  
Zhun Xu ◽  
Fei Ma

Abstract A flip bucket is a common element used to dissipate energy for release works. For the purpose of avoiding excessive scour and flow choking, the slot-type flip bucket was developed. In this paper, a flow-separating slot-type flip bucket (FSSFB) is proposed on this basis, which can divide the approach flow into three branches by dividing walls, and thus generate two small, completely separated jets resulting in better energy dissipation performance and reduced scour. Based on model tests, the jet trajectory of the FSSFB is investigated. Considering the local head loss from the flow passing the dividing walls, the take-off velocity is amended for calculating the jet trajectory using the projectile method. Based on fitting analysis, the head loss coefficient is a function of the relative width b/B, the relative angle θ/β of the slot and the Froude number Fro of the approach flow. Finally, an empirical relationship for the head loss coefficient is provided, and the error in the calculation of jet trajectory is less than 10% for the FSSFB.


Author(s):  
Wagner W. Á. Bombardelli ◽  
Antonio P. de Camargo ◽  
José A. Frizzone ◽  
Rogério Lavanholi ◽  
Hermes S. da Rocha

ABSTRACT Information about local head loss caused by connections employed in micro-irrigation systems is hard to be found in literature. The objective of this research was to experimentally determine the local head losses in connections commonly used in micro-irrigation and propose mathematical models using the theorem of Buckingham. The methodology of tests was based on international standards. The tests were carried out under controlled inlet pressure, at 150 kPa, and five to ten units of each connection model were tested. The curves relating flow and head losses were drawn based on 15 flow conditions, obtained under increase and decrease of flow rate. For each condition, 30 points were collected resulting in a sample size of 900 points in each test. For each connection model evaluated, the following information was obtained: curves of local head loss as a function of flow rate and of local head loss coefficient (KL). The obtained values of KL ranged from 2.72 to 24.16, which become constant for Reynolds number higher than 10,000. The sensitivity of the coefficient related to a ratio of the internal sections in the connections was also verified. The flow exponents presented values close to the one applied by the Darcy-Weisbach equation (m = 2). The models developed for the connections presented a satisfactory performance.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1056 ◽  
Author(s):  
Heidi Böttcher ◽  
Roman Gabl ◽  
Markus Aufleger

The requirements for fish protection at hydro power plants have led to a significant decrease of the bar spacing at trash racks as well as the need of an inclined or angled design to improve the guidance effect (fish-friendly trash racks). The flexible fish fence (FFF) is a new developed fish protection and guidance system, created by horizontally arranged steel cables instead of bars. The presented study investigated experimentally the head loss coefficient of an angled horizontal trash rack with circular bars (CBTR) and the FFF with identical cross sections in a flume (scale 1:2). Nine configurations of different bar and cable spacing (blockage ratio) and rack angles were studied for CBTR and FFF considering six different stationary flow conditions. The results demonstrate that head loss coefficient is independent from the studied Bar–Reynolds number range and increases with increasing blockage ratio and angle. At an angle of 30 degrees, a direct comparison between the two different rack options was conducted to investigate the effect of cable vibrations. At the lowest blockage ratio, head loss for both options are in similar very low ranges, while the head loss coefficient of the FFF increases significantly compared to the CBTR with an increase of blockage. Further, the results indicate a moderate overestimation with the predicted head loss by common head loss equations developed for inclined vertical trash racks. Thus, an adaption of the design equation is proposed to improve the estimation of head loss on both rack options.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 828 ◽  
Author(s):  
Wichowski ◽  
Siwiec ◽  
Kalenik

The article presents the results of tests of minor head losses through PVC and PP elbows for a flow of water and mixtures of water and sand with grain sizes of up to 0.5 mm and concentrations of 5.6 g·L−1, 10.84 g·L−1, and 15.73 g·L−1. The tests were carried out at variable flow velocities for three elbow diameters of 63 mm, 75 mm, and 90 mm. The flow rate, pressure difference in the tested cross-sections, and temperature of the fluids were measured and automatically recorded. The results of the measurements were used to develop mathematical models for determining the minor head loss coefficient as a function of elbow diameter, sand concentration in the liquid, and Reynolds number. The mathematical model was developed by cross validation. It was shown that when the concentration of sand in the liquid was increased by 1.0 g∙L−1, the coefficient of minor head loss through the elbows increased, in the Reynolds number range of 4.6 × 104–2.1 × 105, by 0.3–0.01% for PP63, 0.6–0.03% for PP75, 1.1–0.06% for PP90, 0.8−0.01% for PVC63, 0.8–0.02% for PVC75, and 0.9–0.04% for PVC90. An increase in Re from 5 × 104 to 2 × 106 for elbows with diameters of 63, 75 and 90 mm caused a 7.3%, 6.8%, and 6.0% decrease in the minor head loss coefficient, respectively.


Author(s):  
Piotr Wichowski ◽  
Tadeusz Siwiec ◽  
Marek Kalenik

The article presents the results of tests of minor head losses through PVC and PP elbows for a flow of water and mixtures of water and sand with grain sizes of up to 0.5 mm and concentrations of 5.6 g∙L-1, 10.84 g∙L-1, and 15.73 g∙L-1. The tests were carried out at variable flow velocities for three elbow diameters of 63, 75, and 90 mm. The flow rate, pressure difference in the tested cross-sections, and temperature of the fluids were measured and automatically recorded. The results of the measurements were used to develop mathematical models for determining the minor head loss coefficient as a function of elbow diameter, sand concentration in the liquid, and Reynolds number. The mathematical model was developed by cross validation. It was shown that when the concentration of sand in the liquid was increased by 1.0 g∙L-1, the coefficient of minor head loss through the elbows increased, in the Reynolds number range of 4.6∙104 − 2.1∙105, by 0.3−0.01% for PP63, 0.6−0.03 % for PP75, 1.1−0.06 % for PP90, 0.8−0.01 % for PVC63, 0.8−0.02 % for PVC75, and 0.9−0.04 % for PVC90. An increase in Re from 5∙104 to 2∙106 for elbows with diameters of 63, 75 and 90 mm caused a 7.3 %, 6.8 %, and 6.0 % decrease in the minor head loss coefficient, respectively.


2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1449-1455
Author(s):  
Haochun Zhang ◽  
Zhiyuan Feng ◽  
Xiuting Liu ◽  
Dezhuang Yin

The current work aims at a fundamental understanding of the concept of head loss coefficient, K, of nanofluids flowing in sudden expansionpipe. While so far several articles have applied this concept to the laminar flow regime of water, it is extended here to the mechanics of nanofluids. To describe the flow dissipation, a thermodynamic model is built based on the Second law analysis approach to calculate the overall entropy generation with the assistance of appropriate single-phase models used to get viscosity values of nanofluids. Then, specific values of K can be determined by the integration of entropy generation field. In addition, considering the thermodynamic irreversibility caused by temperature gradients due to heat transfer processes, a new concept of thermodynamic loss coefficient, KE, has been applied to calculate total dissipation. The correlations between K and Reynolds number of sudden expansion flows are also derived. It is interesting to note that the results reveal some striking similarities among nanofluids of various volume concentrations. This unexpected phenomenon shows that the K value is independent of the volume concentration (within the scope of the study). Furthermore, the results show that with an increase in both nanofluid concentration and temperature rise in the heated section, the KE and Nusselt number increases accordingly.


Sign in / Sign up

Export Citation Format

Share Document