orifice plate
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 66)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Vol 9 ◽  
Author(s):  
Hebin Liao ◽  
Wei Zhang ◽  
Sebastian Borucki ◽  
Jiasen Jiang ◽  
Tianqin Lin ◽  
...  

Tobacco drying is an important part in the whole process of cigarette production, and its quality is directly related to the quality of cigarettes. CTD (Comas Tower Dryer) is a new type of airflow dryer, which is widely used in the tobacco industry because of its high drying efficiency. In actual production, the uneven outlet of the tobacco cutter leads to a stacking phenomenon, which affects the subsequent process of production. In this paper, the distribution of the internal flow field of the drying tower was studied from the aspects of the overlap degree of the orifice plate and deformation of the top structure at the top of the drying tower to explore the way to optimize the inner flow field to lead to the uneven distribution of the outlet. The results show that the structure whose contact position between the wall and the outlet extending outward can improve the uniformity of the outlet, while the overlap degree of the orifice plate had no effect on the uniformity of the outlet.


2021 ◽  
Vol 44 ◽  
pp. 103374
Author(s):  
Jiali Tang ◽  
Yuyang Shi ◽  
Zhengrong OuYang

2021 ◽  
Author(s):  
Harpreet Atwal ◽  
Anika Wong ◽  
Michael Boutilier

Abstract Continuum transport equations are commonly applied to nanopores in atomically thin membranes for simple modeling. Although these equations do not apply for nanopores approaching the fluid or solute molecule size, they can be reasonably accurate for larger nanopores. Relatively large graphene nanopores have applications in small particle filtration and appear as unwanted defects in large-area membranes. Solute transport rates through these nanopores determine the rejection performance of the membrane. Atomically thin membranes commonly operate in a regime where advection and diffusion both contribute appreciably to transport. Solute mass transfer rates through larger nanopores have previously been modeled by adding continuum estimates for pure diffusion and pure advection through an infinitesimally thick orifice plate, as if the separate contributions were independent. We show here that estimating the transport rate in this way is accurate to within 30%. We further derive an expression for the net mass transfer rate in advection-diffusion through an infinitesimal thickness orifice plate at low Reynolds numbers that is accurate to within 1% for positive Peclet numbers (where diffusion is in the same direction as advection) and applies for negative Peclet numbers as well. Based on our expression, we devise an equation for the net mass transfer rate in creeping flow through orifice plates of arbitrary thickness that matches finite volume calculations to within 3% for positive Peclet numbers. These simple but accurate analytical equations for mass transfer rates in creeping flow through an orifice plate are useful tools in constructing approximate transport models.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012019
Author(s):  
A P Jurga ◽  
M J Janocha ◽  
G Yin ◽  
K E T Giljarhus ◽  
M C Ong

Abstract In the present study, numerical simulations using different Reynolds-Averaged Navier–Stokes (RANS) turbulence models are carried out to investigate the turbulent flow through the orifice plate at Reynolds number (Re) of 23000. The orifice thickness to pipe diameter ratio (t) and the orifice diameter to pipe diameter ratio (β) are fixed and equal to 0.1 and 0.5, respectively. The objective is to evaluate the behaviour of various RANS models with respect to the relevant flow parameters such as the pressure drop, velocity distributions and turbulence intensity profiles in the pipe by comparing the results with available published experimental data. The following turbulence models are studied: the k – ε, the k – ε Low Re, the k – ε RNG, the k – ε Realizable, the k – ω SST, the γ – SST, the EARSM and the k – ε Cubic models. It is found that based on the validation study of the flow through the orifice plate, the following models are in good agreement with experimental measurements: the k – ω SST, the γ – SST and the EARSM. They show a better performance than the k – ε model family in predicting the flow features which are important for the orifice flowmeter design.


2021 ◽  
Vol 81 ◽  
pp. 102047
Author(s):  
Abouzar Rajabi Behesht Abad ◽  
Pezhman Soltani Tehrani ◽  
Mohammad Naveshki ◽  
Hamzeh Ghorbani ◽  
Nima Mohamadian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document